Patents by Inventor Peter R. C. Gascoyne

Peter R. C. Gascoyne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10413912
    Abstract: Disclosed are apparatuses, systems, and methods for programmable fluidic processors. In one embodiment, the invention involves manipulating droplets across a reaction surface of the processor substantially contact-free of any surfaces. The reaction surface and the electrodes of the processor may include a coating repelling the droplets. Further, the present invention provides for a suitable suspending medium for repelling droplets away from fixed surfaces.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: September 17, 2019
    Assignee: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Peter R. C. Gascoyne, Jody Vykoukal, Jon Schwartz
  • Publication number: 20160030951
    Abstract: Disclosed are apparatuses, systems, and methods for programmable fluidic processors. In one embodiment, the invention involves manipulating droplets across a reaction surface of the processor substantially contact-free of any surfaces. The reaction surface and the electrodes of the processor may include a coating repelling the droplets. Further, the present invention provides for a suitable suspending medium for repelling droplets away from fixed surfaces.
    Type: Application
    Filed: March 2, 2015
    Publication date: February 4, 2016
    Inventors: Peter R.C. Gascoyne, Jody Vykoukal, Jon Schwartz
  • Patent number: 8974652
    Abstract: Disclosed are apparatuses, systems, and methods for programmable fluidic processors. In one embodiment, the invention involves manipulating droplets across a reaction surface of the processor substantially contact-free of any surfaces. The reaction surface and the electrodes of the processor may include a coating repelling the droplets. Further, the present invention provides for a suitable suspending medium for repelling droplets away from fixed surfaces.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 10, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Peter R. C. Gascoyne, Jody Vykoukal, Jon Schwartz
  • Patent number: 7862702
    Abstract: Methods and apparatus for preparing a smear for cytopathology or other analysis. In a representative embodiment, cells of a sample are subjected to a dielectrophoretic force to segregate the cells into two or more zones of a surface. The particles are attached to the surface, thereby defining a “segregated smear.” The segregated smear is then fixed and stained for cytopathology analysis.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: January 4, 2011
    Assignee: Board of Regents, The University of Texas System
    Inventors: Peter R. C. Gascoyne, Jody V. Vykoukal, Chandra Das, Frederick F. Becker
  • Patent number: 7105081
    Abstract: Methods and apparatus for preparing a smear for cytopathology or other analysis. In a representative embodiment, cells of a sample are subjected to a dielectrophoretic force to segregate the cells into two or more zones of a surface. The particles are attached to the surface, thereby defining a “segregated smear.” The segregated smear is then fixed and stained for cytopathology analysis.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: September 12, 2006
    Assignee: Board of Regents, The University of Texas System
    Inventors: Peter R. C. Gascoyne, Jody V. Vykoukal, Chandra Das, Frederick F. Becker
  • Patent number: 7033473
    Abstract: Methods and apparatuses for discriminating matter utilizing dielectrophoresis combined with magnetophoresis. A sample having one or more constituents is injected into an inlet port of a chamber. A carrier medium flow is initiated at the inlet port to establish a flow within the chamber. A dielectrophoretic force is generated to act on the constituents of the sample. A magnetophoretic force is generated to act on the constituents of the sample. The dielectrophoretic force and magnetophoretic forces are balanced to position the constituents within the chamber. The constituents are then collected at one or more outlet ports of the chamber according to the dielectric and magnetic characteristics of the constituents. The constituents may be collected as a function of time-of-exit from the chamber and/or position within the chamber.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: April 25, 2006
    Assignee: Board of Regents, University of Texas
    Inventors: Peter R. C. Gascoyne, Jody V. Vykoukal, Frederick F. Becker
  • Publication number: 20040178068
    Abstract: Methods and apparatus for preparing a smear for cytopathology or other analysis. In a representative embodiment, cells of a sample are subjected to a dielectrophoretic force to segregate the cells into two or more zones of a surface. The particles are attached to the surface, thereby defining a “segregated smear.” The segregated smear is then fixed and stained for cytopathology analysis.
    Type: Application
    Filed: December 22, 2003
    Publication date: September 16, 2004
    Applicant: The University of Texas System
    Inventors: Peter R.C. Gascoyne, Jody V. Vykoukal, Chandra Das, Frederick F. Becker
  • Publication number: 20040011651
    Abstract: Methods and apparatus for discriminating matter in a chamber having an inlet port and an outlet port utilizing dielectrophoresis and field flow fractionation. A carrier medium is introduced into the inlet port and is directed from the inlet port to the outlet port according to a velocity profile. A programmed voltage signal is applied to an electrode element coupled to the chamber to form a dielectrophoretic force on the matter. The dielectrophoretic force is balanced with a gravitational force to displace the matter to positions within said velocity profile in the carrier medium to discriminate the matter. A chamber having a top and bottom outlet port may be utilized to withdraw a first portion of a carrier medium from the top outlet port at a first, controllable fluid flow rate and to withdraw a second portion of the carrier medium from the bottom outlet port at a second, controllable fluid flow rate.
    Type: Application
    Filed: May 13, 2003
    Publication date: January 22, 2004
    Applicant: Board of Regents, The University of Texas System
    Inventors: Frederick Becker, Peter R.C. Gascoyne, Ying Huang, Xiaobo Wang, Jun Yang
  • Patent number: 6641708
    Abstract: Methods and apparatus for discriminating matter in a chamber having an inlet port and an outlet port utilizing dielectrophoresis and field flow fractionation. A carrier medium is introduced into the inlet port and is directed from the inlet port to the outlet port according to a velocity profile. A programmed voltage signal is applied to an electrode element coupled to the chamber to form a dielectrophoretic force on the matter. The dielectrophoretic force is balanced with a gravitational force to displace the matter to positions within said velocity profile in the carrier medium to discriminate the matter. A chamber having a top and bottom outlet port may be utilized to withdraw a first portion of a carrier medium from the top outlet port at a first, controllable fluid flow rate and to withdraw a second portion of the carrier medium from the bottom outlet port at a second, controllable fluid flow rate.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: November 4, 2003
    Assignee: Board of Regents, The University of Texas System
    Inventors: Frederick F. Becker, Peter R. C. Gascoyne, Ying Huang, Xiao-Bo Wang, Jun Yang
  • Publication number: 20030173223
    Abstract: Methods and apparatuses for providing wall-less virtual channels. The wall-less channels may be regions such as stripes or other patterns that are defined by polar surface coatings. These wall-less channel may be used with polar solvents and defined by polar surface patterning of narrowly separated top and bottom walls of a chamber filled elsewhere by a non-polar partitioning medium. This provides a simple and easy-to-fabricate interface between the micro and macro worlds in which microfluidic processes are separated from the macro world fluid flow by a narrow veil of immiscible fluid across which an exchange of droplets can be controlled electrically.
    Type: Application
    Filed: January 3, 2003
    Publication date: September 18, 2003
    Applicant: Board of Regents,The University of Texas System
    Inventors: Peter R.C. Gascoyne, Jody Vykoukal, Frederick F. Becker
  • Publication number: 20030171325
    Abstract: Methods and apparatuses for solid-phase oligonucleotide synthesis and forming long polynucleotides. One exemplary method includes synthesizing a sense oligonucleotide; synthesizing an antisense oligonucleotide; annealing the sense and antisense oligonucleotides to form double stranded DNA (dsDNA); capping the ends of the dsDNA; cleaving the dsDNA wherein cleavage occurs at or near a Watson-Crick base pair mismatch; and digesting uncapped dsDNA. Another exemplary method includes synthesizing a first proofread double stranded DNA (dsDNA); synthesizing a second proofread dsDNA; and ligating the first proofread DNA with the second proofread DNA to form a long polynucleotide.
    Type: Application
    Filed: January 3, 2003
    Publication date: September 11, 2003
    Applicant: Board of Regents, The University of Texas System
    Inventors: Peter R.C. Gascoyne, Daynene Vykoukal, Frederick F. Becker
  • Publication number: 20030119057
    Abstract: Engineered microparticles, libraries of microparticles, and methods relating thereto. The microparticles are distinguishable based on differences in dielectric response to an applied electric field. In different embodiments, the dielectric differences may be engineered through, but not limited to, dielectrically dispersive materials, surface charge, and/or fluorescence. Gangliosides may be incorporated with the microparticles to control aggregation. Vesicles including erythrocyte ghosts may be used as a basis for microparticles. The microparticles may utilize a biotin streptavidin system for surface functionalization.
    Type: Application
    Filed: December 20, 2001
    Publication date: June 26, 2003
    Applicant: Board of Regents
    Inventors: Peter R.C. Gascoyne, Jody Vykoukal, Daynene Vykoukal, Susan Sharma, Frederick F. Becker
  • Publication number: 20030015428
    Abstract: An engineered microparticle and methods and systems relating thereto. The microparticle includes a conductive core and an insulating layer surrounding the conductive core and having a thickness sufficient to render the microparticle responsive to a dielectrophoretic force.
    Type: Application
    Filed: June 14, 2001
    Publication date: January 23, 2003
    Inventors: Frederick F. Becker, Peter R.C. Gascoyne, Jody Vykoukal, Xiaobo Wang
  • Patent number: 6437551
    Abstract: A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: August 20, 2002
    Assignee: The Regents of the University of California
    Inventors: Peter Krulevitch, Harold D. Ackler, Frederick Becker, Bernhard E. Boser, Adam B. Eldredge, Christopher K. Fuller, Peter R. C. Gascoyne, Julie K. Hamilton, Stefan P. Swierkowski, Xiao-Bo Wang
  • Publication number: 20020036141
    Abstract: Methods and apparatuses for discriminating matter utilizing dielectrophoresis combined with magnetophoresis. A sample having one or more constituents is injected into an inlet port of a chamber. A carrier medium flow is initiated at the inlet port to establish a flow within the chamber. A dielectrophoretic force is generated to act on the constituents of the sample. A magnetophoretic force is generated to act on the constituents of the sample. The dielectrophoretic force and magnetophoretic forces are balanced to position the constituents within the chamber. The constituents are then collected at one or more outlet ports of the chamber according to the dielectric and magnetic characteristics of the constituents. The constituents may be collected as a function of time-of-exit from the chamber and/or position within the chamber.
    Type: Application
    Filed: June 14, 2001
    Publication date: March 28, 2002
    Inventors: Peter R. C. Gascoyne, Jody V. Vykoukal, Frederick F. Becker
  • Patent number: 6352838
    Abstract: Manipulation of DNA molecules in solution has become an essential aspect of genetic analyses used for biomedical assays, the identification of hazardous bacterial agents, and in decoding the human genome. Currently, most of the steps involved in preparing a DNA sample for analysis are performed manually and are time, labor, and equipment intensive. These steps include extraction of the DNA from spores or cells, separation of the DNA from other particles and molecules in the solution (e.g. dust, smoke, cell/spore debris, and proteins), and separation of the DNA itself into strands of specific lengths. Dielectrophoresis (DEP), a phenomenon whereby polarizable particles move in response to a gradient in electric field, can be used to manipulate and separate DNA in an automated fashion, considerably reducing the time and expense involved in DNA analyses, as well as allowing for the miniaturization of DNA analysis instruments.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: March 5, 2002
    Assignee: The Regents of the Universtiy of California
    Inventors: Peter A. Krulevitch, Robin R. Miles, Xiao-Bo Wang, Raymond P. Mariella, Peter R. C. Gascoyne, Joseph W. Balch
  • Patent number: 6287832
    Abstract: The present disclosure is directed to a novel apparatus and novel methods for the separation, characterization, and manipulation of matter. In particular, the invention combines the use of frequency-dependent dielectric and conductive properties of particulate matter and solubilized matter with the properties of the suspending and transporting medium to discriminate and separate such matter. The apparatus includes a chamber having at least one electrode element and at least one inlet and one output port into which cells are introduced and removed from the chamber. Matter carried through the chamber in a fluid stream is then displaced within the fluid by a dielectrophoretic (DEP) force caused by the energized electrode. Following displacement within the fluid, matter travels through the chamber at velocities according to the velocity profile of the chamber. After the matter has transmitted through the chamber, it exits at the opposite end of the chamber at a characteristic position.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: September 11, 2001
    Assignee: Board of Regents, The University of Texas System
    Inventors: Frederick F. Becker, Peter R. C. Gascoyne, Ying Huang, Xiao-Bo Wang
  • Patent number: 5993630
    Abstract: The present disclosure is directed to a novel apparatus and novel methods for the separtion, characterization, and manipulation of matter. In particular, the invention combines the use of frequency-dependent dielectric and conductive properties of particulate matter and solubilized matter with the properties of the suspending and transporting medium to discriminate and separate such matter. The apparatus includes a chamber having at least one electrode element and at least one inlet and one output port into which cells are introduced and removed from the chamber. Matter carried through the chamber in a fluid stream is then displaced within the fluid by a dielectrophoretic (DEP) force caused by the energized electrode. Following displacement within the fluid, matter travels through the chamber at velocities according to the velocity profile of the chamber. After the matter has transitted through the chamber, it exits at the opposite end of the chamber at a characteristic position.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: November 30, 1999
    Assignee: Board of Regents The University of Texas System
    Inventors: Frederick F. Becker, Peter R. C. Gascoyne, Ying Huang, Xiao-Bo Wang
  • Patent number: 5993632
    Abstract: The present disclosure is directed to a novel apparatus and novel methods for the separation, characterization, and manipulation of matter. In particular, the invention combines the use of frequency-dependent dielectric and conductive properties of particulate matter and solubilized matter with the properties of the suspending and transporting medium to discriminate and separate such matter. The apparatus includes a chamber having at least one electrode element and at least one inlet and one output port into which cells are introduced and removed from the chamber. Matter carried through the chamber in a fluid stream is then displaced within the fluid by a dielectrophoretic (DEP) force caused by the energized electrode. Following displacement within the fluid, matter travels through the chamber at velocities according to the velocity profile of the chamber. After the matter has transitted through the chamber, it exists at the opposite end of the chamber at a characteristic position.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: November 30, 1999
    Assignee: Board of Regents The University of Texas System
    Inventors: Frederick F. Becker, Peter R. C. Gascoyne, Ying Huang, Xiao-Bo Wang
  • Patent number: 5888370
    Abstract: The present disclosure is directed to a novel apparatus and novel methods for the separation, characterization, and manipulation of matter. In particular, the invention combines the use of frequency-dependent dielectric and conductive properties of particulate matter and solubilized matter with the properties of the suspending and transporting medium to discriminate and separate such matter. The apparatus includes a chamber having at least one electrode element and at least one inlet and one output port into which cells are introduced and removed from the chamber. Matter carried through the chamber in a fluid stream is then displaced within the fluid by a dielectrophoretic (DEP) force caused by the energized electrode. Following displacement within the fluid, matter travels through the chamber at velocities according to the velocity profile of the chamber. After the matter has transitted through the chamber, it exits at the opposite end of the chamber at a characteristic position.
    Type: Grant
    Filed: February 23, 1996
    Date of Patent: March 30, 1999
    Assignee: Board of Regents, The University of Texas System
    Inventors: Frederick F. Becker, Peter R. C. Gascoyne, Ying Huang, Xiao-Bo Wang