Patents by Inventor Peter R. Menge

Peter R. Menge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11693133
    Abstract: A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a Group 5A element. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including an antimony cation.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: July 4, 2023
    Assignee: LUXIUM SOLUTIONS, LLC
    Inventors: Fang Meng, Peter R. Menge
  • Patent number: 11591517
    Abstract: A luminescent material can include a rare earth halide having a chemical formula of RE(1-A-B-C)HTADETBSETCXz, wherein RE is a rare earth element, HT is an element or an interstitial site that provides a hole trap, DET is a dopant that provides a relatively deep electron trap, SET is a dopant that provides a relatively shallow electron trap, X is one or more halides, each of A, B, and C has a value greater at least 0.00001 and at most 0.09, and Z has a value in a range of 2 to 4. In an embodiment, a ratio of B:C is selected so that luminescent material has good linearity performance. In another embodiment, the ratio of B:C can be in a range of 10:1 to 100:1.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: February 28, 2023
    Assignee: LUXIUM SOLUTIONS, LLC
    Inventor: Peter R. Menge
  • Patent number: 11462338
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: October 4, 2022
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Publication number: 20220260733
    Abstract: A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a Group 5A element. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including an antimony cation.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 18, 2022
    Inventors: Fang MENG, Peter R. Menge
  • Patent number: 11340360
    Abstract: A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a Group 5A element. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including an antimony cation.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: May 24, 2022
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Fang Meng, Peter R. Menge
  • Patent number: 11249202
    Abstract: A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a dopant selected from the group consisting of chromium (Cr), zirconium (Zr), cobalt (Co), manganese (Mn), cadmium (Cd), dysprosium (Dy), thulium (Tm), tantalum (Ta), and erbium (Er), the dopant concentration of the element selected from the group consisting of chromium (Cr), zirconium (Zr), cobalt (Co), manganese (Mn), cadmium (Cd), dysprosium (Dy), thulium (Tm), tantalum (Ta), and erbium (Er) in the scintillation crystal is in a range of 1×10?7 mol % to 0.5 mol %. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including a cation.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: February 15, 2022
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Fang Meng, Peter R. Menge
  • Patent number: 11242484
    Abstract: A luminescent material can include a rare earth halide having a chemical formula of RE(1-A-B-C)HTADETBSETCXz, wherein RE is a rare earth element, HT is an element or an interstitial site that provides a hole trap, DET is a dopant that provides a relatively deep electron trap, SET is a dopant that provides a relatively shallow electron trap, X is one or more halides, each of A, B, and C has a value greater at least 0.00001 and at most 0.09, and Z has a value in a range of 2 to 4. In an embodiment, a ratio of B:C is selected so that luminescent material has good linearity performance. In another embodiment, the ratio of B:C can be in a range of 10:1 to 100:1.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: February 8, 2022
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventor: Peter R. Menge
  • Patent number: 11054530
    Abstract: A substrate can include at least two scintillator materials that are mixed at a predetermined ratio. In an embodiment, the scintillator materials can have a decay time difference of at least 50% when exposed to a same radiation source. In another embodiment, the scintillator materials can have a maximum emission wavelength difference of at least 25 nm when exposed to a same radiation source. At least one of the scintillator materials has a decay time of at most 10 ?s. A system can include the substrate and a logic element configured to determine an identity represented by the substrate. A method can include generating an electronic pulse in response to the substrate being exposed to a radiation source; and analyzing the electronic pulse to determine an identity represented by the substrate.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 6, 2021
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventor: Peter R. Menge
  • Publication number: 20210165115
    Abstract: A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a Group 5A element. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including an antimony cation.
    Type: Application
    Filed: January 14, 2021
    Publication date: June 3, 2021
    Inventors: Fang MENG, Peter R. Menge
  • Publication number: 20210124064
    Abstract: A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a dopant selected from the group consisting of chromium (Cr), zirconium (Zr), cobalt (Co), manganese (Mn), cadmium (Cd), dysprosium (Dy), thulium (Tm), tantalum (Ta), and erbium (Er), the dopant concentration of the element selected from the group consisting of chromium (Cr), zirconium (Zr), cobalt (Co), manganese (Mn), cadmium (Cd), dysprosium (Dy), thulium (Tm), tantalum (Ta), and erbium (Er) in the scintillation crystal is in a range of 1×10?7 mol % to 0.5 mol %. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including a cation.
    Type: Application
    Filed: October 28, 2020
    Publication date: April 29, 2021
    Inventors: Fang MENG, Peter R. Menge
  • Patent number: 10947452
    Abstract: A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, RE is Ce, and the scintillation crystal is doped with Sr, Ba, or a mixture thereof at a concentration of at least approximately 0.0002 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved linearity and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection system can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection system can be useful in a variety of radiation imaging applications.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: March 16, 2021
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Peter R. Menge, Vladimir Ouspenski
  • Patent number: 10928526
    Abstract: A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a Group 5A element. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including an antimony cation.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: February 23, 2021
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Fang Meng, Peter R. Menge
  • Publication number: 20210012919
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 14, 2021
    Inventors: Kan YANG, Peter R. Menge, John M. Frank
  • Patent number: 10825573
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: November 3, 2020
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Patent number: 10497484
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: December 3, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Patent number: 10442989
    Abstract: A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, RE is Ce, and the scintillation crystal is doped with Sr, Ba, or a mixture thereof at a concentration of at least approximately 0.0002 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved linearity and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection system can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection system can be useful in a variety of radiation imaging applications.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: October 15, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Peter R. Menge, Vladimir Ouspenski
  • Publication number: 20190051425
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 14, 2019
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Patent number: 10134499
    Abstract: A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: November 20, 2018
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge, John M. Frank
  • Publication number: 20180327663
    Abstract: A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, RE is Ce, and the scintillation crystal is doped with Sr, Ba, or a mixture thereof at a concentration of at least approximately 0.0002 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved linearity and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection system can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection system can be useful in a variety of radiation imaging applications.
    Type: Application
    Filed: July 24, 2018
    Publication date: November 15, 2018
    Inventors: Peter R. Menge, Vladimir Ouspenski
  • Patent number: RE49174
    Abstract: A radiation detector can include a scintillator having opposing end surfaces and a plurality of discrete photosensors disposed on an end surface of the scintillator. In an embodiment, the photosensors are disposed at the corners or along the peripheral edge of the end surface, as opposed to being disposed at the center of the end surface. In an embodiment, the plurality of discrete photosensors may cover at most 80% of a surface area of the end surface of the scintillator and may not cover a center of the end surface of the scintillator. In a further embodiment, an aspect ratio of the monolithic scintillator can be selected to improve energy resolution.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: August 16, 2022
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kan Yang, Peter R. Menge