Patents by Inventor Peter Rule

Peter Rule has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9554742
    Abstract: Systems and method are disclosed for determining a concentration of an analyte in a fluid (e.g., blood). The system can draw blood from a patient and deliver the blood to a sample cell. A particular component of the fluid (e.g., plasma) may be separated and/or positioned such that the concentration of the analyte is measured in the particular component of the fluid (e.g., plasma). The sample cell can include a sample container that has two window pieces. The system can have a fluid passage having a tip configured to mate with a multi-lumen catheter without leaking. The multi-lumen catheter can have proximal and distal ports. A fluid pressure system can be configured to periodically draw fluid from vasculature through a proximal intravascular opening and the proximal port while maintaining a low pressure and/or flow rate to thereby reduce risk of reversing the fluid flow in a vessel and drawing infusates upstream into another intravascular opening.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: January 31, 2017
    Assignee: OptiScan Biomedical Corporation
    Inventors: Eugene Lim, Roger Tong, Peter Rule, James R. Braig, Richard Keenan, David N. Callicoat
  • Publication number: 20160371451
    Abstract: Some embodiments provide a system for synchronizing and configuring monitoring devices. In some embodiments, a patient monitoring device settings module is configured to automatically provide configuration settings to a plurality of patient monitoring devices. A monitoring device data module is configured to receive measurement data from at least one of the patient monitoring devices. An electronic medical records system interface is configured to provide patient data at least partially derived from the received measurement data to an electronic medical records system. A patient records interface is configured to provide patient data to at least one of the patient monitoring devices.
    Type: Application
    Filed: March 21, 2016
    Publication date: December 22, 2016
    Inventors: Peter Rule, Gil Rivas
  • Publication number: 20160317744
    Abstract: Disclosed are methods and apparatuses for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment dose (e.g. insulin, dextrose, etc.) and provide glycemic control. The dose of the treatment drug may be based on the patient's calculated sensitivity to treatment dosing, for example. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte. Delivery of the treatment drug can be cut off if the determined analyte concentration indicates that continued delivery would be harmful to the patient.
    Type: Application
    Filed: April 1, 2016
    Publication date: November 3, 2016
    Inventor: Peter Rule
  • Patent number: 9414782
    Abstract: Disclosed are methods and apparatus for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment drug (e.g., insulin or glucose) and provide glycemic control. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 16, 2016
    Assignee: OptiScan Biomedical Corporation
    Inventors: James R. Braig, Richard Keenan, Peter Rule, Gil Rivas, Mahesh Seetharaman
  • Patent number: 9404852
    Abstract: A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: August 2, 2016
    Assignee: OptiScan Biomedical Corporation
    Inventors: James R. Braig, Peter Rule, Philip C. Hartstein, Bernhard B. Sterling, Jennifer H. Gable, Kenneth I. Li
  • Publication number: 20160157768
    Abstract: In certain embodiments, a sampling assembly is for use with a main analyzer. The main analyzer is configured to sense an analyte in a body fluid obtained from a patient through a first fluid passageway extending from the main analyzer. The sampling assembly includes an instrument portion separate from the main analyzer and including at least one sensor. The instrument portion is removably engaged with the first fluid passageway. The at least one sensor is in sensing engagement with the first fluid passageway such that the at least one sensor can sense a property of a fluid within the first fluid passageway.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 9, 2016
    Inventors: James R. Braig, Peter Rule
  • Patent number: 9302045
    Abstract: Disclosed are methods and apparatuses for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment dose (e.g. insulin, dextrose, etc.) and provide glycemic control. The dose of the treatment drug may be based on the patient's calculated sensitivity to treatment dosing, for example. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte. Delivery of the treatment drug can be cut off if the determined analyte concentration indicates that continued delivery would be harmful to the patient.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: April 5, 2016
    Assignee: OptiScan Biomedical Corporation
    Inventor: Peter Rule
  • Patent number: 9289169
    Abstract: Some embodiments provide a system for synchronizing and configuring monitoring devices. In some embodiments, a patient monitoring device settings module is configured to automatically provide configuration settings to a plurality of patient monitoring devices. A monitoring device data module is configured to receive measurement data from at least one of the patient monitoring devices. An electronic medical records system interface is configured to provide patient data at least partially derived from the received measurement data to an electronic medical records system. A patient records interface is configured to provide patient data to at least one of the patient monitoring devices.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: March 22, 2016
    Assignee: OptiScan Biomedical Corp.
    Inventors: Peter Rule, Gil Rivas
  • Patent number: 9091676
    Abstract: Systems and methods for analyzing multiple components of a fluid sample are provided. In certain embodiments, a system can include an analyte detection system configured to measure first analyte data in a first component of a fluid sample received from a patient and measure second analyte data in a second component of a fluid sample. In some embodiments, one or more portions of an optical system is movable with respect to other portions of the system in order to optically and/or electrochemically analyze multiple components of a fluid sample. In other embodiments, optical and/or electrochemical analysis can be performed simultaneously on multiple components of a fluid sample. In some embodiments, a first analyte can be measured in a sample (e.g., whole blood) before the sample is separated into its components (e.g., plasma, red blood cells, etc.), and a second analyte can be measured in a component of the sample after separation.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 28, 2015
    Assignee: OptiScan Biomedical Corp.
    Inventors: Peter Rule, James R. Braig, Richard Keenan, II, David Callicoat
  • Publication number: 20150198501
    Abstract: Various embodiments disclosed herein relate to detecting leaks in a patient monitoring system. The system can include a fluid handling network configured to receive a fluid sample drawn from a patient and to deliver at least a portion of the fluid sample to an analyte measurement system. The system can isolate at least a portion of the fluid handling network, can apply pressure to the at least a portion of the fluid handling network, can measure the pressure in the at least a portion of the fluid handling network, and can determine whether a leak is present in the at least a portion of the fluid handling network based at least in part on the measured pressure.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 16, 2015
    Inventors: Peter Rule, James D. Causey, III
  • Publication number: 20150168294
    Abstract: A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
    Type: Application
    Filed: July 18, 2014
    Publication date: June 18, 2015
    Inventors: James R. Braig, Peter Rule, Philip C. Hartstein, Bernhard B. Sterling, Jennifer H. Gable, Kenneth I. Li
  • Publication number: 20150119663
    Abstract: Systems and method are disclosed for determining a concentration of an analyte in a fluid (e.g., blood). The system can draw blood from a patient and deliver the blood to a sample cell. A particular component of the fluid (e.g., plasma) may be separated and/or positioned such that the concentration of the analyte is measured in the particular component of the fluid (e.g., plasma). The sample cell can include a sample container that has two window pieces. The system can have a fluid passage having a tip configured to mate with a multi-lumen catheter without leaking. The multi-lumen catheter can have proximal and distal ports. A fluid pressure system can be configured to periodically draw fluid from vasculature through a proximal intravascular opening and the proximal port while maintaining a low pressure and/or flow rate to thereby reduce risk of reversing the fluid flow in a vessel and drawing infusates upstream into another intravascular opening.
    Type: Application
    Filed: January 5, 2015
    Publication date: April 30, 2015
    Inventors: Eugene Lim, Roger Tong, Peter Rule, James R. Braig, Richard Keenan, David N. Callicoat
  • Publication number: 20150045641
    Abstract: Systems for rapid and accurate analyte measurement are described. For example, periodic glucose measurements can be achieved with high accuracy in a critical care environment by drawing blood into a device more than once per hour, analyzing blood (for example using infrared radiation through plasma). Safety and accuracy can be achieved by improved fluid control and avoidance of clotting. Data can be conveyed (e.g., displayed) to a user. A user can be allowed to annotate the data. For example, a touchscreen or other interface can allow addition of notes on a running graph of data, indicating events or other items of interest that may correspond to data readings or to particular times.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 12, 2015
    Inventor: Peter Rule
  • Publication number: 20140275868
    Abstract: Some embodiments provide a system for synchronizing and configuring monitoring devices. In some embodiments, a patient monitoring device settings module is configured to automatically provide configuration settings to a plurality of patient monitoring devices. A monitoring device data module is configured to receive measurement data from at least one of the patient monitoring devices. An electronic medical records system interface is configured to provide patient data at least partially derived from the received measurement data to an electronic medical records system. A patient records interface is configured to provide patient data to at least one of the patient monitoring devices.
    Type: Application
    Filed: November 22, 2013
    Publication date: September 18, 2014
    Applicant: OptiScan Biomedical Corporation
    Inventors: Peter Rule, Gil Rivas
  • Patent number: 8786838
    Abstract: A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: July 22, 2014
    Assignee: OptiScan Biomedical Corporation
    Inventors: James R. Braig, Peter Rule, Philip C. Hartstein, Bernhard B. Sterling, Jennifer H. Gable, Kenneth I. Li
  • Publication number: 20140066844
    Abstract: Disclosed are methods and apparatuses for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment dose (e.g. insulin, dextrose, etc.) and provide glycemic control. The dose of the treatment drug may be based on the patient's calculated sensitivity to treatment dosing, for example. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte. Delivery of the treatment drug can be cut off if the determined analyte concentration indicates that continued delivery would be harmful to the patient.
    Type: Application
    Filed: April 5, 2013
    Publication date: March 6, 2014
    Applicant: OPTISCAN BIOMEDICAL CORPORATION
    Inventor: Peter Rule
  • Patent number: 8597190
    Abstract: Some embodiments provide a system for synchronizing and configuring monitoring devices. In some embodiments, a patient monitoring device settings module is configured to automatically provide configuration settings to a plurality of patient monitoring devices. A monitoring device data module is configured to receive measurement data from at least one of the patient monitoring devices. An electronic medical records system interface is configured to provide patient data at least partially derived from the received measurement data to an electronic medical records system. A patient records interface is configured to provide patient data to at least one of the patient monitoring devices.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: December 3, 2013
    Assignee: Optiscan Biomedical Corporation
    Inventors: Peter Rule, Gil Rivas
  • Publication number: 20130165900
    Abstract: Disclosed are methods and apparatus for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment drug (e.g., insulin or glucose) and provide glycemic control. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte.
    Type: Application
    Filed: September 14, 2012
    Publication date: June 27, 2013
    Applicant: OPTISCAN BIOMEDICAL CORPORATION
    Inventors: James R. Braig, Richard Keenan, Peter Rule, Gil Rivas, Mahesh Seetharaman
  • Patent number: 8449524
    Abstract: Disclosed are methods and apparatus for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment drug (e.g., insulin or glucose) and provide glycemic control. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: May 28, 2013
    Assignee: Optiscan Biomedical Corporation
    Inventors: James R. Braig, Richard Keenan, Peter Rule, Gil Rivas, Mahesh Seetharaman
  • Publication number: 20130123592
    Abstract: Systems and methods for determining a physiological parameter in a patient are provided. In certain embodiments, a system can include an analyte detection system configured to measure first analyte data in a fluid sample received from a patient, a medical sensor configured to measure second analyte data in the patient, and a processor configured to receive the first analyte data and the second analyte data and to determine a physiological parameter based at least in part on the first analyte data and the second analyte data. In certain such embodiments, the medical sensor may be a pulse oximeter, and the physiological parameter may include a cardiovascular parameter including, for example, cardiac output.
    Type: Application
    Filed: September 10, 2012
    Publication date: May 16, 2013
    Applicant: OPTISCAN BIOMEDICAL CORPORATION
    Inventor: Peter Rule