Patents by Inventor Peter S. Whitney

Peter S. Whitney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11749962
    Abstract: An optically pumped tunable VCSEL swept source module has a VCSEL and a pump, which produces light to pump the VSCEL, wherein the pump is geometrically isolated from the VCSEL. In different embodiments, the pump is geometrically isolated by defocusing light from the pump in front of the VCSEL, behind the VCSEL, and/or by coupling the light from the pump at an angle with respect to the VCSEL. In the last case, angle is usually less than 88 degrees. There are further strategies for attacking pump noise problems. Pump feedback can be reduced through (1) Faraday isolation and (2) geometric isolation. Single frequency pump lasers (Distributed feedback lasers (DFB), distributed Bragg reflector lasers (DBR), Fabry-Perot (FP) lasers, discrete mode lasers, volume Bragg grating (VBG) stabilized lasers can eliminate wavelength jitter and amplitude noise that accompanies mode hopping.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: September 5, 2023
    Assignee: Excelitas Technologies Corp.
    Inventors: Bartley C. Johnson, Walid A. Atia, Peter S. Whitney, Mark E. Kuznetsov, Edward J. Mallon
  • Patent number: 11699894
    Abstract: A MEMS tunable VCSEL includes a membrane device having a mirror and a distal-side electrostatic cavity for displacing the mirror to increase a size of an optical cavity. A VCSEL device includes an active region for amplifying light. Then, one or more proximal-side electrostatic cavities are defined between the VCSEL device and the membrane device and used to displace the mirror to decrease a size of an optical cavity.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: July 11, 2023
    Assignee: Excelitas Technologies Corp.
    Inventors: James W. Getz, Peter S. Whitney
  • Publication number: 20230208107
    Abstract: A vertical cavity surface emitting laser (VCSEL) has a shortened overall laser cavity by combining the gain section with a distributed Bragg reflector (DBR). The overall cavity length can be contracted by placing gain structures inside the DBR. This generally applies to a number of semiconductor material systems and wavelength bands, but this scheme is very well suited to the AlGaAs/GaAs material system with strained InGaAs quantum wells as a gain medium, for example.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 29, 2023
    Applicant: Excelitas Technologies Corp.
    Inventors: Bartley C. Johnson, Mark E. Kuznetsov, Peter S. Whitney
  • Publication number: 20230051091
    Abstract: A MEMS tunable VCSEL includes a membrane device having a mirror and a distal-side electrostatic cavity for displacing the mirror to increase a size of an optical cavity. A VCSEL device includes an active region for amplifying light. Then, one or more proximal-side electrostatic cavities are defined between the VCSEL device and the membrane device and used to displace the mirror to decrease a size of an optical cavity.
    Type: Application
    Filed: August 16, 2021
    Publication date: February 16, 2023
    Inventors: James W. Getz, Peter S. Whitney
  • Publication number: 20230046578
    Abstract: A MEMS tunable VCSEL includes a membrane device having a mirror and a distal-side electrostatic cavity for displacing the mirror to increase a size of an optical cavity. A VCSEL device includes an active region for amplifying light. Then, a proximal-side electrostatic cavity is defined between the VCSEL device and the membrane device is used to displace the mirror to decrease a size of an optical cavity.
    Type: Application
    Filed: June 28, 2022
    Publication date: February 16, 2023
    Applicant: Excelitas Technologies Corp.
    Inventors: James W. Getz, Peter S. Whitney
  • Patent number: 11431151
    Abstract: A MEMS tunable VCSEL includes a membrane device having a mirror and a distal-side electrostatic cavity for displacing the mirror to increase a size of an optical cavity. A VCSEL device includes an active region for amplifying light. Then, a proximal-side electrostatic cavity is defined between the VCSEL device and the membrane device is used to displace the mirror to decrease a size of an optical cavity.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: August 30, 2022
    Assignee: Excelitas Technologies Corp.
    Inventors: James W. Getz, Peter S. Whitney
  • Patent number: 11139635
    Abstract: Quantum well designs for tunable VCSELs are disclosed that are tolerant of the wavelength shift. Specifically, the active region has even number of substantially uniformly spaced (¼ of the center wavelength in the semiconducting material) quantum wells.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 5, 2021
    Assignee: Excelitas Technologies Corp.
    Inventors: Bartley C. Johnson, Mark E. Kuznetsov, Walid A. Atia, Peter S. Whitney
  • Publication number: 20210175683
    Abstract: An optically pumped tunable VCSEL swept source module has a VCSEL and a pump, which produces light to pump the VSCEL, wherein the pump is geometrically isolated from the VCSEL. In different embodiments, the pump is geometrically isolated by defocusing light from the pump in front of the VCSEL, behind the VCSEL, and/or by coupling the light from the pump at an angle with respect to the VCSEL. In the last case, angle is usually less than 88 degrees. There are further strategies for attacking pump noise problems. Pump feedback can be reduced through (1) Faraday isolation and (2) geometric isolation. Single frequency pump lasers (Distributed feedback lasers (DFB), distributed Bragg reflector lasers (DBR), Fabry-Perot (FP) lasers, discrete mode lasers, volume Bragg grating (VBG) stabilized lasers can eliminate wavelength jitter and amplitude noise that accompanies mode hopping.
    Type: Application
    Filed: January 13, 2021
    Publication date: June 10, 2021
    Inventors: Bartley C. Johnson, Walid A. Atia, Peter S. Whitney, Mark E. Kuznetsov, Edward J. Mallon
  • Patent number: 10951009
    Abstract: A design and method for introducing asymmetric crystal strain to control polarization in a tunable VCSEL, either optically or electrically pumped. The invention is especially relevant to wafer- or die-bonded tunable VCSELs. Then, mechanical stress is applied to the half VCSEL device by asymmetric arrangement of metal bond pads.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: March 16, 2021
    Assignee: Excelitas Technologies Corp.
    Inventors: Bartley C. Johnson, Mark R. Malonson, Walid A. Atia, Mark E. Kuznetsov, James W. Getz, Peter S. Whitney
  • Patent number: 10951007
    Abstract: An optically pumped tunable VCSEL swept source module has a VCSEL and a pump, which produces light to pump the VSCEL, wherein the pump is geometrically isolated from the VCSEL. In different embodiments, the pump is geometrically isolated by defocusing light from the pump in front of the VCSEL, behind the VCSEL, and/or by coupling the light from the pump at an angle with respect to the VCSEL. In the last case, angle is usually less than 88 degrees. There are further strategies for attacking pump noise problems. Pump feedback can be reduced through (1) Faraday isolation and (2) geometric isolation. Single frequency pump lasers (Distributed feedback lasers (DFB), distributed Bragg reflector lasers (DBR), Fabry-Perot (FP) lasers, discrete mode lasers, volume Bragg grating (VBG) stabilized lasers can eliminate wavelength jitter and amplitude noise that accompanies mode hopping.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: March 16, 2021
    Assignee: EXCELITAS TECHNOLOGIES CORP.
    Inventors: Bartley C. Johnson, Walid A. Atia, Peter S. Whitney, Mark E. Kuznetsov, Edward J. Mallon
  • Publication number: 20210050712
    Abstract: A vertical cavity surface emitting laser (VCSEL) has a shortened overall laser cavity by combining the gain section with a distributed Bragg reflector (DBR). The overall cavity length can be contracted by placing gain structures inside the DBR. This generally applies to a number of semiconductor material systems and wavelength bands, but this scheme is very well suited to the AlGaAs/GaAs material system with strained InGaAs quantum wells as a gain medium, for example.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 18, 2021
    Inventors: Bartley C. Johnson, Mark E. Kuznetsov, Peter S. Whitney
  • Publication number: 20200144793
    Abstract: A MEMS tunable VCSEL includes a membrane device having a mirror and a distal-side electrostatic cavity for displacing the mirror to increase a size of an optical cavity. A VCSEL device includes an active region for amplifying light. Then, a proximal-side electrostatic cavity is defined between the VCSEL device and the membrane device is used to displace the mirror to decrease a size of an optical cavity.
    Type: Application
    Filed: November 5, 2019
    Publication date: May 7, 2020
    Inventors: James W. Getz, Peter S. Whitney
  • Publication number: 20190386461
    Abstract: Quantum well designs for tunable VCSELs are disclosed that are tolerant of the wavelength shift. Specifically, the active region has even number of substantially uniformly spaced (¼ of the center wavelength in the semiconducting material) quantum wells.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 19, 2019
    Inventors: Bartley C. Johnson, Mark E. Kuznetsov, Walid A. Atia, Peter S. Whitney
  • Publication number: 20190348815
    Abstract: A design and method for introducing asymmetric crystal strain to control polarization in a tunable VCSEL, either optically or electrically pumped. The invention is especially relevant to wafer- or die-bonded tunable VCSELs. Then, mechanical stress is applied to the half VCSEL device by asymmetric arrangement of metal bond pads.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 14, 2019
    Inventors: Bartley C. Johnson, Mark R. Malonson, Walid A. Atia, Mark E. Kuznetsov, James W. Getz, Peter S. Whitney
  • Publication number: 20190348813
    Abstract: An optically pumped tunable VCSEL swept source module has a VCSEL and a pump, which produces light to pump the VSCEL, wherein the pump is geometrically isolated from the VCSEL. In different embodiments, the pump is geometrically isolated by defocusing light from the pump in front of the VCSEL, behind the VCSEL, and/or by coupling the light from the pump at an angle with respect to the VCSEL. In the last case, angle is usually less than 88 degrees. There are further strategies for attacking pump noise problems. Pump feedback can be reduced through (1) Faraday isolation and (2) geometric isolation. Single frequency pump lasers (Distributed feedback lasers (DFB), distributed Bragg reflector lasers (DBR), Fabry-Perot (FP) lasers, discrete mode lasers, volume Bragg grating (VBG) stabilized lasers can eliminate wavelength jitter and amplitude noise that accompanies mode hopping.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 14, 2019
    Inventors: Bartley C. Johnson, Walid A. Atia, Peter S. Whitney, Mark E. Kuznetsov, Edward J. Mallon
  • Patent number: 9874740
    Abstract: A Fabry-Perot tunable filter comprises a membrane device. The membrane device includes a support structure having an optical port. Also, the membrane device has an optical membrane structure separated from the support structure over the optical port. The optical membrane structure includes a center body portion and an outer body portion. Tethers extend radially from the center body portion to the outer body portion of the optical membrane structure. The center body portion has an area that is about equal or smaller than the area of the optical port.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: January 23, 2018
    Assignee: Axsun Technologies, Inc.
    Inventors: Vaibhav Mathur, Peter S. Whitney, James W. Getz
  • Patent number: 9800019
    Abstract: An optical coherence analysis system uses a laser swept source that is constrained to operate in a stable mode locked condition by modulating a drive current to the semiconductor optical amplifier as function of wavelength or synchronously with the drive voltage of the laser's tunable element based on stability map for the laser.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: October 24, 2017
    Assignee: Axsun Technologies, Inc.
    Inventors: Walid A. Atia, Randal A. Murdza, Peter S. Whitney
  • Publication number: 20150171595
    Abstract: An optical coherence analysis system uses a laser swept source that is constrained to operate in a stable mode locked condition by modulating a drive current to the semiconductor optical amplifier as function of wavelength or synchronously with the drive voltage of the laser's tunable element based on stability map for the laser.
    Type: Application
    Filed: February 25, 2015
    Publication date: June 18, 2015
    Inventors: Walid A. Atia, Randal A. Murdza, Peter S. Whitney
  • Patent number: 9048614
    Abstract: Dry oxygen, dry air, or other gases such as ozone are hermetically sealed within the package of the external cavity laser or ASE swept source to avoid packaging-induced failure or PLF. PIF due to hydrocarbon breakdown at optical interfaces with high power densities is believed to occur at the SLED and/or SOA facets as well as the tunable Fabry-Perot reflector/filter elements and/or output fiber. Because the laser is an external cavity tunable laser and the configuration of the ASE swept sources, the power output can be low while the internal power at surfaces can be high leading to PIF at output powers much lower than the 50 mW.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: June 2, 2015
    Assignee: Axsun Technologies, Inc.
    Inventors: Peter S. Whitney, Dale C. Flanders
  • Patent number: 9036235
    Abstract: An optical membrane device comprises a substrate, at least one support block on a surface of the substrate, and at least one plate. A torsion beam supports the plate above the substrate on the support block. The optical membrane device also includes an optical membrane structure supported by the plate above the substrate and at least one electrode on the substrate underneath the plate. In one implementation, the optical membrane device further comprises a tether for coupling the optical membrane structure to the plate. The tether extends between the optical membrane structure and the plate. In another implementation, the substrate of the optical membrane device has an optical port through the substrate directly below the optical membrane structure. The plate is substantially balanced around the torsion beam to minimize a sensitivity to orientation in a gravitational field.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: May 19, 2015
    Assignee: Axsun Technologies, Inc.
    Inventors: Vaibhav Mathur, Dale C. Flanders, Peter S. Whitney, James W. Getz