Patents by Inventor Peter S. Wittenberg

Peter S. Wittenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11409309
    Abstract: An automatic aircraft positioning system includes a first aircraft including one more fiducials, and a second aircraft including a positioning radar, control devices that are configured to control operation of the second aircraft, and a control unit in communication with the positioning radar and the control devices. The positioning radar is configured to transmit a radar transmit signal. The one or more fiducials are configured to receive the radar transmit signal and output one or more return signals in response to the radar transmit signal. The positioning radar is configured to receive the one or more return signals and determine a position and orientation of the second aircraft relative to the first aircraft, or vice versa, from the one or more return signals. The control unit is configured to automatically control the second aircraft in relation to the first aircraft during an automatic positioning mode.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: August 9, 2022
    Assignee: THE BOEING COMPANY
    Inventors: Peter S. Wittenberg, Michael K. Martin
  • Publication number: 20210286379
    Abstract: An automatic aircraft positioning system includes a first aircraft including one more fiducials, and a second aircraft including a positioning radar, control devices that are configured to control operation of the second aircraft, and a control unit in communication with the positioning radar and the control devices. The positioning radar is configured to transmit a radar transmit signal. The one or more fiducials are configured to receive the radar transmit signal and output one or more return signals in response to the radar transmit signal. The positioning radar is configured to receive the one or more return signals and determine a position and orientation of the second aircraft relative to the first aircraft, or vice versa, from the one or more return signals. The control unit is configured to automatically control the second aircraft in relation to the first aircraft during an automatic positioning mode.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 16, 2021
    Applicant: THE BOEING COMPANY
    Inventors: Peter S. Wittenberg, Michael K. Martin
  • Patent number: 11002819
    Abstract: A radar system includes a transmitter for transmitting a radio frequency (RF) signal or a radar signal and a plurality of receivers. Each receiver receives a plurality of reflected signals created by a plurality of targets reflecting the RF signal or radar signal. The reflected signals include background noise and each of the receivers are separated by a predetermined distance. The radar system also includes a multiple input de-noiser configured to de-noise input signals from the plurality of receivers and to determine a time difference of arrival of the reflected signals between the plurality of receivers. A detection and angular resolution module is configured to determine an angular resolution between the plurality of targets using the time difference of arrival of the reflected signals between the plurality of receivers.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: May 11, 2021
    Assignee: The Boeing Company
    Inventors: Peter S. Wittenberg, Simon L. Haxton, Jason R. Smith, Peter Petre
  • Patent number: 10921422
    Abstract: A radar system including a transmit antenna for transmitting a radio frequency (RF) signal or a radar signal and a receive antenna for receiving a plurality of reflected signals created by a plurality of targets reflecting the RF signal or radar signal. The reflected signals include noise. The radar system also includes an analog-to-digital converter (ADC) that digitizes or samples the reflected signals to provide a digitized or sampled noisy input signal. The radar system further includes a reservoir computer that receives the noisy input signal. The reservoir computer includes a time-varying reservoir and is configured to de-noise the noisy input signal and provide a range measurement for each of the plurality of targets.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: February 16, 2021
    Assignees: The Boeing Company, HRL Laboratories, LLC
    Inventors: Jason R. Smith, Shankar Rao, Peter Petre, Peter S. Wittenberg, Simon L. Haxton
  • Patent number: 10783430
    Abstract: A method for removing an extracted RF signal to examine a spectrum of at least one other RF signal includes receiving a mixture signal by an ADC. The mixture signal includes a plurality of separate signals from different signal sources. The mixture signal is digitized by the ADC. A first digitized signal and a second digitized signal are generated that are the same. The first digitized signal is delayed a predetermined time delay and the second digitized signal is processed in a neuromorphic signal processor to extract an extracted signal. The predetermined time delay corresponds to a delay embedding in the neuromorphic signal processor. A phase delay and amplitude of the extracted signal is adjusted based on a phase delay and amplitude of the first digitized signal. An adjusted extracted signal is cancelled from the first digitized signal to provide an input examination signal for examination.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: September 22, 2020
    Assignees: The Boeing Company, HRL Laboratories, LLC
    Inventors: Peter S. Wittenberg, Peter Petre, Shankar R. Rao
  • Patent number: 10601479
    Abstract: In an antenna array, signals may be manipulated to increase coherency at certain locations (beamfocusing) and reduce or cancel the signals at other locations (nulling). This is accomplished by multiplying the signals received or transmitted by the set of antennas by a weight vector that is generated by determining a covariance matrix based on a vector representing signals at the set of antennas, vectors representing the desired beamfocusing and nulling locations, and a desired nulling depth.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: March 24, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Peter S. Wittenberg, Debra P. Michal
  • Publication number: 20190324108
    Abstract: A radar system includes a transmitter for transmitting a radio frequency (RF) signal or a radar signal and a plurality of receivers. Each receiver receives a plurality of reflected signals created by a plurality of targets reflecting the RF signal or radar signal. The reflected signals include background noise and each of the receivers are separated by a predetermined distance. The radar system also includes a multiple input de-noiser configured to de-noise input signals from the plurality of receivers and to determine a time difference of arrival of the reflected signals between the plurality of receivers. A detection and angular resolution module is configured to determine an angular resolution between the plurality of targets using the time difference of arrival of the reflected signals between the plurality of receivers.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 24, 2019
    Inventors: Peter S. Wittenberg, Simon L. Haxton, Jason R. Smith, Peter Petre
  • Publication number: 20190238203
    Abstract: In an antenna array, signals may be manipulated to increase coherency at certain locations (beamfocusing) and reduce or cancel the signals at other locations (nulling). This is accomplished by multiplying the signals received or transmitted by the set of antennas by a weight vector that is generated by determining a covariance matrix based on a vector representing signals at the set of antennas, vectors representing the desired beamfocusing and nulling locations, and a desired nulling depth.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Applicant: The Boeing Company
    Inventors: Peter S. Wittenberg, Debra P. Michal
  • Patent number: 10313220
    Abstract: A signal receiver includes receive circuitry. The signal receiver further includes a processor coupled to the receive circuitry and configured to receive, from a filter, a stream of samples including a first set of samples. A data rate of an input of the filter may correspond to a data rate of an output of the filter. The first set of samples includes multiple samples. The processor is further configured to perform a detection operation on the first set of samples. The processor is further configured to detect a signal emitter based on the detection operation.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: June 4, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Peter S. Wittenberg, Brian D. Cordill
  • Patent number: 10277295
    Abstract: In an antenna array, signals may be manipulated to increase coherency at certain locations (beamfocusing) and reduce or cancel the signals at other locations (nulling). This is accomplished by multiplying the signals received or transmitted by the set of antennas by a weight vector that is generated by determining a covariance matrix based on a vector representing signals at the set of antennas, vectors representing the desired beamfocusing and nulling locations, and a desired nulling depth.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: April 30, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Peter S. Wittenberg, Debra P. Michal
  • Publication number: 20190120932
    Abstract: A radar system including a transmit antenna for transmitting a radio frequency (RF) signal or a radar signal and a receive antenna for receiving a plurality of reflected signals created by a plurality of targets reflecting the RF signal or radar signal. The reflected signals include noise. The radar system also includes an analog-to-digital converter (ADC) that digitizes or samples the reflected signals to provide a digitized or sampled noisy input signal. The radar system further includes a reservoir computer that receives the noisy input signal. The reservoir computer includes a time-varying reservoir and is configured to de-noise the noisy input signal and provide a range measurement for each of the plurality of targets.
    Type: Application
    Filed: January 31, 2018
    Publication date: April 25, 2019
    Applicant: HRL Laboratories, LLC
    Inventors: Jason R. Smith, Shankar Rao, Peter Petre, Peter S. Wittenberg, Simon L. Haxton
  • Publication number: 20180089558
    Abstract: A method for removing an extracted RF signal to examine a spectrum of at least one other RF signal includes receiving a mixture signal by an ADC. The mixture signal includes a plurality of separate signals from different signal sources. The mixture signal is digitized by the ADC. A first digitized signal and a second digitized signal are generated that are the same. The first digitized signal is delayed a predetermined time delay and the second digitized signal is processed in a neuromorphic signal processor to extract an extracted signal. The predetermined time delay corresponds to a delay embedding in the neuromorphic signal processor. A phase delay and amplitude of the extracted signal is adjusted based on a phase delay and amplitude of the first digitized signal. An adjusted extracted signal is cancelled from the first digitized signal to provide an input examination signal for examination.
    Type: Application
    Filed: September 26, 2016
    Publication date: March 29, 2018
    Inventors: Peter S. Wittenberg, Peter Petre, Shankar R. Rao
  • Publication number: 20180017665
    Abstract: A signal receiver includes receive circuitry. The signal receiver further includes a processor coupled to the receive circuitry and configured to receive, from a filter, a stream of samples including a first set of samples. A data rate of an input of the filter may correspond to a data rate of an output of the filter. The first set of samples includes multiple samples. The processor is further configured to perform a detection operation on the first set of samples. The processor is further configured to detect a signal emitter based on the detection operation.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 18, 2018
    Applicant: THE BOEING COMPANY
    Inventors: Peter S. Wittenberg, Brian D. Cordill
  • Patent number: 9810774
    Abstract: A multi-beam frequency-modulated continuous wave (FMCW) radar system designed for short range (<20 km) operation in a high-density threat environment against highly maneuverable threats. The multi-beam FMCW system is capable of providing continuous updates, both search and track, for an entire hemisphere against short-range targets. The multi-beam aspect is used to cover the entire field of regard, whereas the FMCW aspect is used to achieve resolution at a significantly reduced computational effort.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: November 7, 2017
    Assignee: The Boeing Company
    Inventor: Peter S. Wittenberg
  • Publication number: 20160139254
    Abstract: A multi-beam frequency-modulated continuous wave (FMCW) radar system designed for short range (<20 km) operation in a high-density threat environment against highly maneuverable threats. The multi-beam FMCW system is capable of providing continuous updates, both search and track, for an entire hemisphere against short-range targets. The multi-beam aspect is used to cover the entire field of regard, whereas the FMCW aspect is used to achieve resolution at a significantly reduced computational effort.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 19, 2016
    Applicant: THE BOEING COMPANY
    Inventor: Peter S. Wittenberg
  • Patent number: 9196147
    Abstract: A method and apparatus for analyzing movement of objects in a border area. Information about the movement of the objects in the border area is identified from sensor data. The information about the movement of the objects in the border area is compared with movement information for the border area to form a comparison. An alert is generated when the comparison indicates that an object of interest in the objects is present.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: November 24, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Nathanael Sommer, Peter S. Wittenberg
  • Publication number: 20150215021
    Abstract: In an antenna array, signals may be manipulated to increase coherency at certain locations (beamfocusing) and reduce or cancel the signals at other locations (nulling). This is accomplished by multiplying the signals received or transmitted by the set of antennas by a weight vector that is generated by determining a covariance matrix based on a vector representing signals at the set of antennas, vectors representing the desired beamfocusing and nulling locations, and a desired nulling depth.
    Type: Application
    Filed: January 29, 2014
    Publication date: July 30, 2015
    Applicant: The Boeing Company
    Inventors: Peter S. Wittenberg, Debra P. Michal
  • Patent number: 8279106
    Abstract: A method for ground surveillance radar performance analysis is disclosed. A vector of point data items indexed by time offset, and comprising a point probability of detection is received. A plurality of initial azimuths of a simulated radar signal of the radar tower is determined based on the radar field-of-regard. A plurality of initial azimuth segment probabilities of detection are calculated for each of the initial azimuths respectively based on the vector of point data items and the initial azimuths, and a segment probability of detection is determined based on the initial azimuth segment probabilities of detection.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: October 2, 2012
    Assignee: The Boeing Company
    Inventors: Peter S. Wittenberg, Vicki Huo
  • Patent number: 7071867
    Abstract: Methods, apparatus, and computer program products are provided for tracking at least one moving target with a radar device without requiring the use of Doppler information. The invention comprises scanning an area with radar signals at a first time to receive a first plurality of target data signals indicative of a position of the target at the first time and determining the position of the target at the first time by collecting the first plurality of target data signals into a first target data grouping, such that the first target data grouping defines a first reference point. Similarly, a second reference point for the target is determined for a second time, and the position of the first reference point is compared to the position of the second reference point to track the moving target. Advantageously, the tracked positions of the moving target may be used to predict a future position of the target at a subsequent time.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: July 4, 2006
    Assignee: The Boeing Company
    Inventors: Peter S. Wittenberg, Aaron Y. Mosher
  • Patent number: 6927725
    Abstract: A system and method for radar detection and calibration. By measuring the true range of a calibration target on entry to the radar's detection zone, the actual detection capability of the radar in current atmospheric conditions with the actual radar can be determined. The radar system is also adapted to determine a sensed position at a sensed time of a target in the radar's detection zone. A calibration target, preferably an unmanned air vehicle (UAV), includes a position device for determining the actual position of the calibration target. A calibration device communicates with the radar system and the calibration target and receives the sensed and actual positions of the calibration target. The calibration device calculates the error between the sensed position and the actual position and adjusts the radar system to minimize the error. The target may include a signal augmentation device to augment the radar cross-section of the target to replicate the radar cross-sections of targets of various types.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: August 9, 2005
    Assignee: The Boeing Company
    Inventors: Peter S. Wittenberg, John Hayn