Patents by Inventor Peter Sagazio

Peter Sagazio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113698
    Abstract: A radiofrequency frontend device includes a memory array, which includes a plurality of input lines; a plurality of output lines; and a plurality of impedance devices, each impedance device connecting an input line of the plurality of input lines to an output line of the plurality of output lines, wherein each impedance represents a filter coefficient; wherein the radiofrequency frontend device is configured to provide at each input line of the plurality of input lines a sampled voltage of an analog electric signal, each sampled voltage corresponding to a voltage of the analog electric signal during a respective time period of a plurality of time periods; and when the memory array receives the sampled voltages, the memory array is configured to modify each of the sampled voltages by a respective impedance device of the plurality of impedance devices and sum the modified sampled voltages.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Richard DORRANCE, Peter SAGAZIO, Renzhi LIU, Hechen WANG, Deepak DASALUKUNTE, Brent R. CARLTON
  • Publication number: 20240097693
    Abstract: An analog-to-digital converter, ADC, is provided. The ADC comprises multiple time-interleaved sub-ADCs, a detection circuit, and a calibration circuit. The sub-ADCs are configured to, when the ADC is in a calibration mode, generate a first signal by sampling a calibration signal based on a first clock signal and at least a second clock signal. The first clock signal comprises a phase shift relative to the second clock signal. The calibration circuit is configured to determine a first mismatch between the phase shift and a phase shift threshold based on the first signal. The detection circuit is configured to, when the ADC is in an operation mode, generate a second signal by sampling one of a biased signal to be received by the sub-ADCs or a second calibration signal based on at least one of the first clock signal and the second clock signal.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 21, 2024
    Inventors: Somnath KUNDU, Amy L. WHITCOMBE, Stefano PELLERANO, Peter SAGAZIO, Brent CARLTON
  • Publication number: 20240021522
    Abstract: Various devices, systems, and/or methods perform wireless chip to chip high speed data transmission. Strategies for such transmission include use of improved microbump antennas, wireless chip to chip interconnects, precoding and decoding strategies, channel design to achieve spatial multiplexing gain in line of sight transmissions, open cavity chip design for improved transmission, and/or mixed signal channel equalization.
    Type: Application
    Filed: December 23, 2020
    Publication date: January 18, 2024
    Inventors: Tolga ACIKALIN, Tae Young YANG, Debabani CHOUDHURY, Shuhei YAMADA, Roya DOOSTNEJAD, Hosein NIKOPOUR, Issy KIPNIS, Oner ORHAN, Mehnaz RAHMAN, Kenneth P. FOUST, Christopher D. HULL, Telesphor KAMGAING, Omkar KARHADE, Stefano PELLERANO, Peter SAGAZIO, Sai VADLAMANI
  • Publication number: 20220407549
    Abstract: A receiver circuit associated with a communication device is disclosed. The receiver circuit comprises a digital data compression circuit configured to receive a plurality of digital receive signals derived from a plurality of analog receive signals respectively associated with the receiver circuit. The digital data compression circuit is further configured to compress the plurality of digital receive signals to form one or more compressed digital data signals based thereon, to be provided to an input output (I/O) interface associated therewith. In some embodiments, a compressed digital signal dimension associated with the one or more compressed digital data signals is less than a digital signal dimension associated with the plurality of digital receive signals.
    Type: Application
    Filed: August 23, 2022
    Publication date: December 22, 2022
    Inventors: Oner Orhan, Hosein Nikopour, Peter Sagazio, Farhana Sheikh, Junyoung Nam, Shilpa Talwar
  • Patent number: 11444645
    Abstract: A receiver circuit associated with a communication device is disclosed. The receiver circuit comprises a digital data compression circuit configured to receive a plurality of digital receive signals derived from a plurality of analog receive signals respectively associated with the receiver circuit. The digital data compression circuit is further configured to compress the plurality of digital receive signals to form one or more compressed digital data signals based thereon, to be provided to an input output (I/O) interface associated therewith. In some embodiments, a compressed digital signal dimension associated with the one or more compressed digital data signals is less than a digital signal dimension associated with the plurality of digital receive signals.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: September 13, 2022
    Assignee: Apple Inc.
    Inventors: Oner Orhan, Hosein Nikopour, Peter Sagazio, Farhana Sheikh, Junyoung Nam, Shilpa Talwar
  • Publication number: 20220200655
    Abstract: A clock buffer or driver is gated pending reception of verifiable crypto keys. These clock buffer or divers remain gated, thus disabling a processor from any meaningful function, till crypto keys are decoded, verified, and applied to the clock buffer or driver. A low frequency pseudorandom frequency hopping time sequence is generated and used for randomizing spread-spectrum to modulate a reference clock (or output clock) of a frequency synthesizer. This hopping time sequence holds the key to unlocking the crypto keys. The PWM modulated crypto keys are carried by the hopping time sequence. To decode the PWM modulated crypto keys, the hopping time sequence is used. The reference clock which is modulated with crypto keys in the spread-spectrum is sent to a decoder (in a processor) along with the hopping time sequence. The crypto keys are decoded and then used to un-gate the clock buffer.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Mohamed A. Abdelmoneum, Nasser Kurd, Thripthi Hegde, Narayan Srinivasa, Peter Sagazio
  • Publication number: 20220200642
    Abstract: Various aspects provide a transceiver and a communication device including the transceiver. In an example, the transceiver includes an amplifier circuit including an amplifier stage with an adjustable degeneration component, the amplifier stage configured to amplify a received input signal with an adjustable gain, an adjustable feedback component coupled to the amplifier stage; and a controller coupled to the amplifier stage and to the adjustable feedback component and configured to adjust the adjustable feedback component based on an adjustment of the adjustable degeneration component.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Abhishek AGRAWAL, Ritesh A. BHAT, Steven CALLENDER, Brent R. CARLTON, Christopher D. HULL, Stefano PELLERANO, Mustafijur RAHMAN, Peter SAGAZIO, Woorim SHIN
  • Publication number: 20220200750
    Abstract: Various aspects of this disclosure provide a receiver. The receiver may include a down-converter configured to down-convert a received communication signal at a predefined carrier frequency, with a reference signal received from a reference signal generator, and a processor configured to perform a signal quality detection to identify a signal quality metric of the received communication signal at the predefined carrier frequency, and to provide a frequency adjusting signal to the reference signal generator to change the frequency of the reference signal based on the performed signal quality detection to identify the signal quality metric of the received communication signal at the predefined carrier frequency.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 23, 2022
    Inventors: Peter SAGAZIO, Chun C. LEE, Stefano PELLERANO, Christopher D. HULL
  • Publication number: 20210075456
    Abstract: A receiver circuit associated with a communication device is disclosed. The receiver circuit comprises a digital data compression circuit configured to receive a plurality of digital receive signals derived from a plurality of analog receive signals respectively associated with the receiver circuit. The digital data compression circuit is further configured to compress the plurality of digital receive signals to form one or more compressed digital data signals based thereon, to be provided to an input output (I/O) interface associated therewith. In some embodiments, a compressed digital signal dimension associated with the one or more compressed digital data signals is less than a digital signal dimension associated with the plurality of digital receive signals.
    Type: Application
    Filed: January 2, 2018
    Publication date: March 11, 2021
    Inventors: Oner Orhan, Hosein Nikopour, Peter Sagazio, Farhana Sheikh, Junyoung Nam, Shilpa Talwar
  • Patent number: 10594309
    Abstract: In a phase modulation method enable signals may be sequentially generating based on a clock signal to generate a sequence of enable signals, and a signal is delayed by delay values generated from delay cells based on the sequence of enable signals and digital bit values. A phase modulator may include a first delay circuit configured to: delay a clock signal based on a first delay value to generate a first delayed clock signal, and delay a carrier signal based on the first delayed clock signal to generate a first delayed carrier signal; and a second delay circuit configured to: delay the first delayed clock signal based on a second delay value to generate a second delayed clock signal, and delay the first delayed carrier signal based on the second delayed clock signal to generate a second delayed carrier signal.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: March 17, 2020
    Assignee: Apple Inc.
    Inventors: Abhishek Agrawal, Stefano Pellerano, Yanjie Wang, Peter Sagazio
  • Publication number: 20200007116
    Abstract: In a phase modulation method enable signals may be sequentially generating based on a clock signal to generate a sequence of enable signals, and a signal is delayed by delay values generated from delay cells based on the sequence of enable signals and digital bit values. A phase modulator may include a first delay circuit configured to: delay a clock signal based on a first delay value to generate a first delayed clock signal, and delay a carrier signal based on the first delayed clock signal to generate a first delayed carrier signal; and a second delay circuit configured to: delay the first delayed clock signal based on a second delay value to generate a second delayed clock signal, and delay the first delayed carrier signal based on the second delayed clock signal to generate a second delayed carrier signal.
    Type: Application
    Filed: July 2, 2018
    Publication date: January 2, 2020
    Inventors: Abhishek Agrawal, Stefano Pellerano, Yanjie Wang, Peter Sagazio