Patents by Inventor Peter Østergaard Vistisen

Peter Østergaard Vistisen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10702855
    Abstract: Method of preparing monolithic SCR catalyst with a plurality of gas flow channels comprising the steps of (a) providing a monolithic shaped substrate with a plurality of parallel gas flow channels; (b) coating the substrate with a wash coat slurry comprising vanadium oxide precursor compounds and titania and optionally tungsten oxide precursor compounds; and (c) drying the thus coated substrate with a drying rate of 5 mm/min or less along flow direction through the gas flow channels; and (d) activating the dried coated substrate by calcining.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: July 7, 2020
    Assignee: UMICORE AG & CO. KG
    Inventors: Jakob Weiland Høj, Peter Østergaard Vistisen
  • Publication number: 20180333698
    Abstract: Method of preparing monolithic SCR catalyst with a plurality of gas flow channels comprising the steps of (a) providing a monolithic shaped substrate with a plurality of parallel gas flow channels; (b) coating the substrate with a wash coat slurry comprising vanadium oxide precursor compounds and titania and optionally tungsten oxide precursor compounds; and (c) drying the thus coated substrate with a drying rate of 5 mm/min or less along flow direction through the gas flow channels; and (d) activating the dried coated substrate by calcining.
    Type: Application
    Filed: November 17, 2016
    Publication date: November 22, 2018
    Applicant: UMICORE AG & CO. KG
    Inventors: Jakob Weiland HØJ, Peter Østergaard VISTISEN
  • Publication number: 20180318796
    Abstract: Method of preparing a monolithic SCR catalyst with a plurality of gas flow channels comprising the steps of (a) providing a monolithic shaped substrate with a plurality of parallel gas flow channels; (b) coating the substrate with a washcoat slurry comprising titania; (c) drying and calcining the washcoat slurry; (d) impregnating the dried and calcined washcoat with an 10 aqueous impregnation solution comprising a precursor of a vanadium oxide; (e) drying the thus coated and impregnated washcoat at a drying rate of 5 mm/min or less along flow direction through the gas flow channels; and 15 (f) activating the dried, coated and impregnated washcoat by calcining.
    Type: Application
    Filed: November 17, 2016
    Publication date: November 8, 2018
    Inventors: Jakob Weiland Høj, Peter Østergaard Vistisen