Patents by Inventor Peter T. Jones
Peter T. Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220365106Abstract: The present invention relates to methods, devices and systems for associating consumable data with an assay consumable used in a biological assay. Provided are assay systems and associated consumables, wherein the assay system adjusts one or more steps of an assay protocol based on consumable data specific for that consumable. Various types of consumable data are described, as well as methods of using such data in the conduct of an assay by an assay system. The present invention also relates to consumables (e.g., kits and reagent containers), software, data deployable bundles, computer-readable media, loading carts, instruments, systems, and methods, for performing automated biological assays.Type: ApplicationFiled: February 24, 2022Publication date: November 17, 2022Inventors: Manish KOCHAR, Peter J. BOSCO, Ian D. CHAMBERLIN, Bandele JEFFREY-COKER, Eric M. JONES, Gary I. KRIVOY, Don E. KRUEGER, Aaron H. LEIMKUEHLER, Pei-Ming WU, Kim-Xuan NGUYEN, Pankaj OBEROI, Louis W. PANG, Jennifer PARKER, Victor PELLICIER, Nicholas SAMMONS, George SIGAL, Jacob N. WOHLSTADTER, Michael L. VOCK, Stanley T. SMITH, Carl C. STEVENS, Rodger D. OSBORNE, Kenneth E. PAGE, Michael T. WADE, Jon WILLOUGHBY, Lei WANG
-
Patent number: 11442163Abstract: A real-time aircraft bird congestion indicator system for measuring congestion in an airspace between aircraft and birds uses one or more radars to continuously survey an airspace around an airport or aerodrome and continuously generate aircraft tracks and bird tracks in the airspace. A congestion processor connected to the radar(s) receives the aircraft and bird tracks and processes them to periodically generate a congestion indicator that measures the congestion in the airspace. A display processor connected to the congestion processor receives the congestion indicator which is updated periodically by the congestion processor and displays the congestion indicator to a user, generates an alert if the congestion indicator falls outside set operating limits, and/or sends the congestion indicator or alert to another system.Type: GrantFiled: March 3, 2021Date of Patent: September 13, 2022Assignee: ACCIPITER RADAR TECHNOLOGIES INC.Inventors: Timothy J. Nohara, Peter T. Weber, Graeme S. Jones, Ilia Choly, Robert Fraser
-
Publication number: 20220234190Abstract: A storage case includes a base including a lower surface, walls extending from the lower surface, and a plurality of recesses arranged in a grid adjacent the lower surface. The lower surface and the walls define a cavity, and each recess has a double bayonet shape defining a partially circular shape with a pair of bayonet channels. The storage case further includes a peg positioned within the cavity and having an elongated body configured to support a tool accessory. The elongated body has a first end and a second end opposite the first end, and the first end includes a bayonet projection. The bayonet projection is alternately receivable in each of plurality of recesses by a bayonet style coupling, and the peg is orthogonal to the lower surface of the base when coupled to each of the plurality of recesses.Type: ApplicationFiled: April 15, 2022Publication date: July 28, 2022Inventors: Peter R. Heath, Steven W. Hyma, Benjamin T. Jones
-
Patent number: 10393618Abstract: Methods and apparatuses are provided for evaluating or testing stiction in Microelectromechanical Systems (MEMS) devices utilizing a mechanized shock pulse generation approach. In one embodiment, the method includes the step or process of loading a MEMS device, such as a multi-axis MEMS accelerometer, into a socket provided on a Device-Under-Test (DUT) board. After loading the MEMS device into the socket, a series of controlled shock pulses is generated and transmitted through the MEMS device utilizing a mechanized test apparatus. The mechanized test apparatus may, for example, repeatedly move the DUT board over a predefined motion path to generate the controlled shock pulses. In certain cases, transverse vibrations may also be directed through the tested MEMS device in conjunction with the shock pulses. An output of the MEMS device is then monitored to determine whether stiction of the MEMS device occurs during each of the series of controlled shock pulses.Type: GrantFiled: June 22, 2016Date of Patent: August 27, 2019Assignee: NXP USA, Inc.Inventors: Peter T. Jones, Arvind Salian, William D. McWhorter, Chad Krueger, John Shipman, Michael Naumann, Larry D. Metzler, Tripti Regmi
-
Publication number: 20170370799Abstract: Methods and apparatuses are provided for evaluating or testing stiction in Microelectromechanical Systems (MEMS) devices utilizing a mechanized shock pulse generation approach. In one embodiment, the method includes the step or process of loading a MEMS device, such as a multi-axis MEMS accelerometer, into a socket provided on a Device-Under-Test (DUT) board. After loading the MEMS device into the socket, a series of controlled shock pulses is generated and transmitted through the MEMS device utilizing a mechanized test apparatus. The mechanized test apparatus may, for example, repeatedly move the DUT board over a predefined motion path to generate the controlled shock pulses. In certain cases, transverse vibrations may also be directed through the tested MEMS device in conjunction with the shock pulses. An output of the MEMS device is then monitored to determine whether stiction of the MEMS device occurs during each of the series of controlled shock pulses.Type: ApplicationFiled: June 22, 2016Publication date: December 28, 2017Applicant: FREESCALE SEMICONDUCTOR INC.Inventors: PETER T. JONES, ARVIND SALIAN, WILLIAM D. MCWHORTER, CHAD KRUEGER, JOHN SHIPMAN, MICHAEL NAUMANN, LARRY D. METZLER, TRIPTI REGMI
-
Patent number: 9612309Abstract: Manufacturing of magnetometer units employs a test socket having a substantially rigid body with a cavity therein holding an untested unit in a predetermined position proximate electrical connection thereto, wherein one or more magnetic field sources fixed in the body provide known magnetic fields at the position so that the response of each unit is measured and compared to stored expected values. Based thereon, each unit can be calibrated or trimmed by feeding corrective electrical signals back to the unit through the test socket until the actual and expected responses match or the unit is discarded as uncorrectable. In a preferred embodiment, the magnetic field sources are substantially orthogonal coil pairs arranged so that their centerlines coincide at a common point within the predetermined position. Because the test-socket is especially rugged and compact, other functions (e.g., accelerometers) included in the unit can also be easily tested and trimmed.Type: GrantFiled: January 16, 2015Date of Patent: April 4, 2017Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Peter T. Jones, David T. Myers, Franklin P. Myers, Jim D. Pak
-
Patent number: 9543067Abstract: Methods, systems and apparatus are provided to apply a magnetic pre-conditioning to magnetic tunneling junction (MTJ) sensors and other micro-magnetic devices after fabrication but before testing, trimming or other subsequent processing. The fabricated sensor device is passed through a magnetic field that has a known direction and orientation relative to the device so that the device is placed into a known state prior to final testing and trimming. Various embodiments allow the field to be applied in situ by a permanent magnet or electromagnet as the devices are being processed by a conventional device handler or similar processing system.Type: GrantFiled: December 20, 2013Date of Patent: January 10, 2017Assignee: NXP USA, INC.Inventors: Carlos M. Acuna, Mohammad A. Faruque, Kevin R. Fugate, Todd D. Hoffmann, Paige M. Holm, Peter T. Jones, Rigoberto Lopez, Jr., William D. McWhorter
-
Patent number: 9527731Abstract: A method for testing a plurality of pressure sensors on a device wafer includes placing a diaphragm of one of the pressure sensors on the device wafer in proximity to a nozzle of a test system. A pneumatic pressure stimulus is applied to the diaphragm via an outlet of the nozzle and a cavity pressure is measured within a cavity associated with the pressure sensor in response to application of the pneumatic pressure stimulus. The pneumatic pressure stimulus within the cavity corresponds to the pressure applied to the diaphragm. Methodology is executed to test the strength and/or stiffness of the diaphragm. Additionally, the methodology and test system can be utilized to determine an individual calibration factor for each pressure sensor on the device wafer.Type: GrantFiled: October 15, 2014Date of Patent: December 27, 2016Assignee: NXP USA, Inc.Inventors: Bruno J. Debeurre, Peter T. Jones, William D. McWhorter, Raimondo P. Sessego
-
Patent number: 9488542Abstract: A pressure sensor (20) includes a test cell (32) and sense cell (34). The sense cell (34) includes an electrode (42) formed on a substrate (30) and a sense diaphragm (68) spaced apart from the electrode (42) to produce a sense cavity (64). The test cell (32) includes an electrode (40) formed on the substrate (30) and a test diaphragm (70) spaced apart from the electrode (40) to produce a test cavity (66). Both of the cells (32, 34) are sensitive to pressure (36). However, a critical dimension (76) of the sense diaphragm (68) is less than a critical dimension (80) of the test diaphragm (70) so that the test cell (32) has greater sensitivity (142) to pressure (36) than the sense cell (34). Parameters (100) measured at the test cell (32) are utilized to estimate a sensitivity (138) of the sense cell (34).Type: GrantFiled: August 11, 2015Date of Patent: November 8, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Chad S. Dawson, Peter T. Jones
-
Patent number: 9400226Abstract: Embodiments of systems for calibrating transducer-including devices include a board support structure, one or more motors, a motor control module, and a calibration control module. The board support structure holds a calibration board in a fixed position with respect to the board support structure. The motor(s) rotate the board support structure around one or more axes of a fixed coordinate system. The motor control module sends motor control signals to the motor(s) to cause the motor(s) to move the board support structure through a series of orientations with respect to the fixed coordinate system. The calibration control module sends, through a communication structure, signals to the transducer-including devices, which are loaded into a plurality of sockets of the calibration board. The signals cause the transducer-including devices to generate transducer data while the board support structure is in or moving toward each orientation of the series of orientations.Type: GrantFiled: April 9, 2013Date of Patent: July 26, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Raimondo P. Sessego, Peter T. Jones, Seyed K. Paransun, James D. Stanley, William D. McWhorter
-
Patent number: 9365413Abstract: Embodiments of packaged transducer-including devices and methods for their calibration are disclosed. Each device includes one or more transducers, an interface configured to facilitate communications with an external calibration controller, a memory, and a processing component. The external calibration controller sends calibration commands to the transducer-including devices through a communication structure. The processing component of each device executes code in response to receiving the calibration commands. Execution of the code includes generating transducer data from the one or more transducers, calculating calibration coefficients using the transducer data, and storing the calibration coefficients within the memory of the device.Type: GrantFiled: August 8, 2013Date of Patent: June 14, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Andres Barrilado, Peter T. Jones, Stephane Lestringuez, Seyed K. Paransun, Raimondo P. Sessego, James D. Stanley
-
Publication number: 20160116361Abstract: A system for testing pressure sensors on a device wafer includes a tray for holding the device wafer. The tray includes a base having a surface, a spacer extending from the surface, and a tacky material disposed on the surface. The spacer holds the device wafer spaced apart from the surface of the base to form a chamber between the surface and the device wafer. A wafer chuck retains the tray and the device wafer under vacuum. The system further includes a nozzle and a seal element in fixed engagement with the nozzle. The seal element surrounds the outlet of the nozzle and is adapted for mechanical contact with the device wafer. An actuator is configured to place the nozzle and a diaphragm of one of the pressure sensors in proximity to one another, wherein a pneumatic pressure stimulus is applied to the diaphragm via an outlet of the nozzle.Type: ApplicationFiled: October 28, 2014Publication date: April 28, 2016Inventors: BRUNO J. DEBEURRE, ALBERT S. CHECKANOV, JANSEN D. CURRENS, PETER T. JONES, WILLIAM D. MCWHORTER, RAIMONDO P. SESSEGO
-
Publication number: 20160107887Abstract: A method for testing a plurality of pressure sensors on a device wafer includes placing a diaphragm of one of the pressure sensors on the device wafer in proximity to a nozzle of a test system. A pneumatic pressure stimulus is applied to the diaphragm via an outlet of the nozzle and a cavity pressure is measured within a cavity associated with the pressure sensor in response to application of the pneumatic pressure stimulus. The pneumatic pressure stimulus within the cavity corresponds to the pressure applied to the diaphragm. Methodology is executed to test the strength and/or stiffness of the diaphragm. Additionally, the methodology and test system can be utilized to determine an individual calibration factor for each pressure sensor on the device wafer.Type: ApplicationFiled: October 15, 2014Publication date: April 21, 2016Inventors: BRUNO J. DEBEURRE, PETER T. JONES, WILLIAM D. MCWHORTER, RAIMONDO P. SESSEGO
-
Patent number: 9285422Abstract: A tester configured to test a strip of devices is provided. The tester may include a communications system, a plurality of communication lines, a plurality of multiplexors, each multiplexor having at least two outputs, wherein each multiplexor is configured to receive a signal generated by the communications system via one of the plurality of communication lines, and each multiplexor may be selectably coupled to at least two of the devices in the strip of devices. The tester may be configured to index the plurality of communication lines to a first subset of the devices, initiate at least one test, command the devices to generate data for each of the at least one tests, retrieve data from a first set of the devices, and retrieve data from a second set of the devices.Type: GrantFiled: May 7, 2012Date of Patent: March 15, 2016Assignee: FREESCALE SEMICONDUCTOR INC.Inventors: Chad S. Dawson, Stephen R. Hooper, Peter T. Jones, Mark E. Schlarmann
-
Patent number: 9285404Abstract: A test structure includes two capacitor structures, wherein one of the capacitor structures has conductor plates spaced apart by a cavity, and the other capacitor structure does not include a cavity. Methodology entails forming the test structure and a pressure sensor on the same substrate using the same fabrication process techniques. Methodology for estimating the sensitivity of the pressure sensor includes detecting capacitances for each of the two capacitor structures and determining a ratio of the capacitances. A critical dimension of the cavity in one of the capacitor structures is estimated using the ratio, and the sensitivity of the pressure sensor is estimated using the critical dimension.Type: GrantFiled: August 15, 2013Date of Patent: March 15, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Chad S. Dawson, Peter T. Jones, Bruno J. Debeurre
-
Patent number: 9285289Abstract: A MEMS pressure sensor (70) includes a sense cell (80), a test cell (82), and a seal structure (84). The test cell includes a test cavity (104), and the seal structure (84) is in communication with the test cavity, wherein the seal structure is configured to be breached to change an initial cavity pressure (51) within the test cavity (104) to ambient pressure (26). Calibration methodology (180) entails obtaining (184) a test signal (186) from the test cell prior to breaching the seal structure, and obtaining (194) another test signal (196) after the seal structure is breached. The test signals are used to calculate a sensitivity (200) of the test cell, the calculated sensitivity is used to estimate the sensitivity (204) of the sense cell, and the estimated sensitivity (204) can be used to calibrate the sense cell.Type: GrantFiled: December 6, 2013Date of Patent: March 15, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Chad S. Dawson, Peter T. Jones
-
Patent number: 9213045Abstract: A mechanism for recovering from stiction-related events in a MEMS device through application of a force orthogonal to the stiction force is provided. A small force applied orthogonal to the vector of a stiction force can release the stuck proof mass easier than a force parallel to the vector of the stiction force. Example embodiments provide a vertical parallel plate or comb-fingered lateral actuator to apply the orthogonal force. Alternate embodiments provide a proof mass of a second transducer to impact a stuck MEMS actuator to release stiction.Type: GrantFiled: May 23, 2013Date of Patent: December 15, 2015Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Kemiao Jia, Peter T. Jones
-
Publication number: 20150346046Abstract: A pressure sensor (20) includes a test cell (32) and sense cell (34). The sense cell (34) includes an electrode (42) formed on a substrate (30) and a sense diaphragm (68) spaced apart from the electrode (42) to produce a sense cavity (64). The test cell (32) includes an electrode (40) formed on the substrate (30) and a test diaphragm (70) spaced apart from the electrode (40) to produce a test cavity (66). Both of the cells (32, 34) are sensitive to pressure (36). However, a critical dimension (76) of the sense diaphragm (68) is less than a critical dimension (80) of the test diaphragm (70) so that the test cell (32) has greater sensitivity (142) to pressure (36) than the sense cell (34). Parameters (100) measured at the test cell (32) are utilized to estimate a sensitivity (138) of the sense cell (34).Type: ApplicationFiled: August 11, 2015Publication date: December 3, 2015Inventors: CHAD S. DAWSON, Peter T. Jones
-
Patent number: 9176020Abstract: A pressure sensor (20) includes a test cell (32) and sense cell (34). The sense cell (34) includes an electrode (42) formed on a substrate (30) and a sense diaphragm (68) spaced apart from the electrode (42) to produce a sense cavity (64). The test cell (32) includes an electrode (40) formed on the substrate (30) and a test diaphragm (70) spaced apart from the electrode (40) to produce a test cavity (66). Both of the cells (32, 34) are sensitive to pressure (36). However, a critical dimension (76) of the sense diaphragm (68) is less than a critical dimension (80) of the test diaphragm (70) so that the test cell (32) has greater sensitivity (142) to pressure (36) than the sense cell (34). Parameters (100) measured at the test cell (32) are utilized to estimate a sensitivity (138) of the sense cell (34).Type: GrantFiled: October 1, 2013Date of Patent: November 3, 2015Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Chad S. Dawson, Peter T. Jones
-
Publication number: 20150179325Abstract: Methods, systems and apparatus are provided to apply a magnetic pre-conditioning to magnetic tunneling junction (MTJ) sensors and other micro-magnetic devices after fabrication but before testing, trimming or other subsequent processing. The fabricated sensor device is passed through a magnetic field that has a known direction and orientation relative to the device so that the device is placed into a known state prior to final testing and trimming. Various embodiments allow the field to be applied in situ by a permanent magnet or electromagnet as the devices are being processed by a conventional device handler or similar processing system.Type: ApplicationFiled: December 20, 2013Publication date: June 25, 2015Inventors: CARLOS M. ACUNA, MOHAMMAD A. FARUQUE, KEVIN R. FUGATE, TODD D. HOFFMANN, PAIGE M. HOLM, PETER T. JONES, RIGOBERTO LOPEZ, JR., WILLIAM D. MCWHORTER