Patents by Inventor Peter T. Lillehei

Peter T. Lillehei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9963345
    Abstract: A method of fabricating a composite material includes utilizing a radio frequency plasma process to form a plasma plume comprising nanoparticles. The nanoparticles may comprise boron nitride nanoparticles, silicon carbide nanoparticles, beryllium oxide nanoparticles, or carbon nanoparticles. The nanoparticles may comprise nanotubes or other particles depending on the requirements of a particular application. The nanoparticles are deposited on a substrate by directing a plasma plume towards the substrate. The nanoparticles are formed in the plasma plume immediately prior to being deposited on the substrate. The nanoparticles may form a mechanical bond with the fibers in addition to a chemical bond in the absence of a catalyst. The substrate may comprise a fiber fabric that may optionally be coated with a thin layer of metal. Alternatively, the substrate may comprise a solid material such as a metal sheet or plate.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 8, 2018
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Peter T. Lillehei
  • Patent number: 9960288
    Abstract: Some implementations provide a device (e.g., solar panel) that includes an active layer and a solar absorbance layer. The active layer includes a first N-type layer and a first P-type layer. The solar absorbance layer is coupled to a first surface of the active layer. The solar absorbance layer includes a polymer composite. In some implementations, the polymer composite includes one of at least metal salts and/or carbon nanotubes. In some implementations, the active layer is configured to provide the photovoltaic effect. In some implementations, the active layer further includes a second N-type layer and a second P-type layer. In some implementations, the active layer is configured to provide the thermoelectric effect. In some implementations, the device further includes a cooling layer coupled to a second surface of the active layer. In some implementations, the cooling layer includes one of at least zinc oxides, indium oxides, and/or carbon nanotubes.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: May 1, 2018
    Assignee: The United State of America as represented by the Administrator of NASA
    Inventors: Jin Ho Kang, Chase Taylor, Cheol Park, Godfrey Sauti, Luke Gibbons, Iseley Marshall, Sharon E. Lowther, Peter T. Lillehei, Joycelyn S. Harrison, Robert G. Bryant
  • Patent number: 9734932
    Abstract: Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: August 15, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Keith L. Gordon, Jin Ho Kang, Cheol Park, Peter T. Lillehei, Joycelyn S. Harrison
  • Patent number: 9550870
    Abstract: A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 24, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Joycelyn S. Harrison, Negin Nazem, Larry Taylor, Jin Ho Kang, Jae-Woo Kim, Godfrey Sauti, Peter T. Lillehei, Sharon E. Lowther
  • Patent number: 9446953
    Abstract: Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 20, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jae-Woo Kim, Sang H. Choi, Sr., Peter T. Lillehei, Sang-Hyon Chu, Yeonjoon Park, Glen C. King, James R. Elliott
  • Publication number: 20140287904
    Abstract: Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (FBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
    Type: Application
    Filed: April 15, 2014
    Publication date: September 25, 2014
    Applicant: U.S.A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Keith L. GORDON, Jin Ho KANG, Cheol PARK, Peter T. LILLEHEI, Joycelyn S. HARRISON
  • Publication number: 20140272170
    Abstract: A method of fabricating a composite material includes utilizing a radio frequency plasma process to form a plasma plume comprising nanoparticles. The nanoparticles may comprise boron nitride nanoparticles, silicon carbide nanoparticles, beryllium oxide nanoparticles, or carbon nanoparticles. The nanoparticles may comprise nanotubes or other particles depending on the requirements of a particular application. The nanoparticles are deposited on a substrate by directing a plasma plume towards the substrate. The nanoparticles are formed in the plasma plume immediately prior to being deposited on the substrate. The nanoparticles may form a mechanical bond with the fibers in addition to a chemical bond in the absence of a catalyst. The substrate may comprise a fiber fabric that may optionally be coated with a thin layer of metal. Alternatively, the substrate may comprise a solid material such as a metal sheet or plate.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Peter T. Lillehei, Robert G. Bryant
  • Patent number: 8696940
    Abstract: Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 15, 2014
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Keith L. Gordon, Jin Ho Kang, Cheol Park, Peter T. Lillehei, Joycelyn S. Harrison
  • Publication number: 20140041705
    Abstract: Some implementations provide a device (e.g., solar panel) that includes an active layer and a solar absorbance layer. The active layer includes a first N-type layer and a first P-type layer. The solar absorbance layer is coupled to a first surface of the active layer. The solar absorbance layer includes a polymer composite. In some implementations, the polymer composite includes one of at least metal salts and/or carbon nanotubes. In some implementations, the active layer is configured to provide the photovoltaic effect. In some implementations, the active layer further includes a second N-type layer and a second P-type layer. In some implementations, the active layer is configured to provide the thermoelectric effect. In some implementations, the device further includes a cooling layer coupled to a second surface of the active layer. In some implementations, the cooling layer includes one of at least zinc oxides, indium oxides, and/or carbon nanotubes.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicants: National Institute of Aerospace, Space Administration
    Inventors: Jin Ho Kang, Chase Taylor, Cheol Park, Godfrey Sauti, Luke Gibbons, Iseley Marshall, Sharon E. Lowther, Peter T. Lillehei, Joycelyn S. Harrison, Robert G. Bryant
  • Patent number: 8608993
    Abstract: A nanocomposite structure and method of fabricating same are provided. The nanocomposite structure is a polymer in an extruded shape with carbon nanotubes (CNTs) longitudinally disposed and dispersed in the extruded shape along a dimension thereof. The polymer is characteristically defined as having a viscosity of at least approximately 100,000 poise at a temperature of 200° C.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: December 17, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Dennis C. Working, Emilie J. Siochi, Cheol Park, Peter T. Lillehei
  • Publication number: 20130119316
    Abstract: Effective radiation shielding is required to protect crew and equipment in various fields including aerospace, defense, medicine and power generation. Light elements and in particular hydrogen are most effective at shielding against high-energy particles including galactic cosmic rays, solar energetic particles and fast neutrons. However, pure hydrogen is highly flammable, has a low neutron absorption cross-section, and cannot be made into structural components. Nanocomposites containing the light elements Boron, Nitrogen, Carbon and Hydrogen as well dispersed boron nano-particles, boron nitride nanotubes (BNNTs) and boron nitride nano-platelets, in a matrix, provide effective radiation shielding materials in various functional forms. Boron and nitrogen have large neutron absorption cross-sections and wide absorption spectra.
    Type: Application
    Filed: May 9, 2011
    Publication date: May 16, 2013
    Applicants: National Institute of Aerospace Associates, Thomas Jefferson National Accelerator Facility, and Space Administration
    Inventors: Godfrey Sauti, Cheol Park, Jin Ho Kang, Jae-Woo Kim, Joycelyn S. Harrison, Michael W. Smith, Kevin Jordan, Sharon E. Lowther, Peter T. Lillehei, Sheila A. Thibeault
  • Patent number: 8217143
    Abstract: Metal nanoshells are fabricated by admixing an aqueous solution of metal ions with an aqueous solution of apoferritin protein molecules, followed by admixing an aqueous solution containing an excess of an oxidizing agent for the metal ions. The apoferritin molecules serve as bio-templates for the formation of metal nanoshells, which form on and are bonded to the inside walls of the hollow cores of the individual apoferritin molecules. Control of the number of metal atoms which enter the hollow core of each individual apoferritin molecule provides a hollow metal nonparticle, or nanoshell, instead of a solid spherical metal nanoparticle.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: July 10, 2012
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Jae-Woo Kim, Sang H. Choi, Peter T. Lillehei, Sang-Hyon Chu, Yeonjoon Park, Glen C. King, James R. Elliott, Jr.
  • Patent number: 8083986
    Abstract: A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: December 27, 2011
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Adminstration of NASA
    Inventors: Sang Hyouk Choi, Yeonjoon Park, Sang-Hyon Chu, James R. Elliott, Glen C. King, Jae-Woo Kim, Peter T. Lillehei, Diane M. Stoakley
  • Patent number: 7998368
    Abstract: Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: August 16, 2011
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jae-Woo Kim, Cheol Park, Sang H. Choi, Peter T. Lillehei, Joycelyn S. Harrison
  • Publication number: 20110169187
    Abstract: A nanocomposite structure and method of fabricating same are provided. The nanocomposite structure is a polymer in an extruded shape with carbon nanotubes (CNTs) longitudinally disposed and dispersed in the extruded shape along a dimension thereof. The polymer is characteristically defined as having a viscosity of at least approximately 100,000 poise at a temperature of 200° C.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Applicants: Space Administration
    Inventors: Dennis C. Working, Emilie J. Siochi, Cheol Park, Peter T. Lillehei
  • Publication number: 20110105293
    Abstract: Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped FBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
    Type: Application
    Filed: September 29, 2010
    Publication date: May 5, 2011
    Applicant: USA as represented by the Administrator of the National Aeronautics & Space Administration
    Inventors: Keith L. Gordon, Jin Ho Kang, Cheol Park, Peter T. Lillehei, Joycelyn S. Harrison
  • Publication number: 20110068291
    Abstract: A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently.
    Type: Application
    Filed: November 26, 2008
    Publication date: March 24, 2011
    Applicant: National Institute of Aerospace Associates
    Inventors: Cheol Park, Joycelyn S. Harrison, Negin Nazem, Larry T. Taylor, Jin Ho Kang, Jae-Woo Kim, Godfrey Sauti, Peter T. Lillehei, Sharon E. Lowther
  • Patent number: 7666939
    Abstract: Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: February 23, 2010
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administrator of NASA
    Inventors: Kristopher Eric Wise, Cheol Park, Emilie J. Siochi, Joycelyn S. Harrison, Peter T. Lillehei, Sharon E. Lowther
  • Publication number: 20090203196
    Abstract: Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.
    Type: Application
    Filed: December 4, 2008
    Publication date: August 13, 2009
    Applicants: National Institute of Aerospace Associates, USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jae-Woo KIM, Sang H. CHOI, SR., Peter T. LILLEHEI, Sang-Hyon CHU, Yeonjoon PARK, Glen C. KING, James R. ELLIOTT, JR.
  • Publication number: 20090185942
    Abstract: A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).
    Type: Application
    Filed: December 4, 2008
    Publication date: July 23, 2009
    Applicants: National Institute of Aerospace Associates, Space Adminstration
    Inventors: Sang Hyouk Choi, SR., Yeonjoon Park, Sang-Hyon Chu, James R. Elliott, Glen C. King, Jae-Woo Kim, Peter T. Lillehei, Diane M. Stoakley