Patents by Inventor Peter Thomas Setsuda DeVore

Peter Thomas Setsuda DeVore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923907
    Abstract: Devices, methods for analog-to-digital converters (ADCs) that perform high-dynamic range measurements based on optical techniques are disclosed. In one example aspect, an optical encoder includes a polarization rotator configured to receive a train of optical pulses, and an electro-optic (EO) modulator coupled to an output of the polarization rotator. The EO modulator is configured to receive a radio frequency (RF) signal and to produce a phase modulated signal in accordance with the RF signal. The optical encoder also includes a polarizing beam splitter coupled to the output of the EO modulator; and an optical hybrid configured to receive two optical signals from the polarizing beam splitter and to produce four optical outputs that are each phase shifted with respect to one another.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: March 5, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, David Simon Perlmutter, Alexander Thomas Wargo, Jason Thomas Chou
  • Patent number: 11630368
    Abstract: Devices, methods and systems for generating wideband, high-fidelity arbitrary radio frequency (RF) passband signals are described. A voltage tunable optical filter for arbitrary RF passband signal generation includes a first input configured to receive a broadband optical pulse train, a second input configured to receive a first control voltage representative of an amplitude signal, an electrooptic modulator to receive the broadband optical pulse train and the first control voltage, to modulate the broadband optical pulse train in accordance with the amplitude signal, and to produce two complementary optical outputs that form two arms of an interferometer, an optical delay component to impart an optical path difference into one of the complementary outputs of the electrooptic modulator, and a combiner or a splitter to receive two complementary optical outputs of the electrooptic modulator after impartation of the optical path difference and to produce an output interference pattern of fringes.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: April 18, 2023
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Apurva Shantharaj Gowda, Jacky Chak-Kee Chan, Peter Thomas Setsuda DeVore, David Simon Perlmutter, Jason Thomas Chou
  • Patent number: 11575438
    Abstract: Devices, systems and methods for encoding information using optical components are described. Information associated with a first optical signal (e.g., an optical pump) is encoded onto the phase of a second optical signal (e.g., an optical probe) using cross phase modulation (XPM) in a non-linear optical medium. The optical signals are multiplexed together into the nonlinear optical medium. The probe experiences a modified index of refraction as it propagates through the medium and thus accumulates a phase change proportional to the intensity of the pump. The disclosed devices can be incorporated into larger components and systems for various applications such as scientific diagnostics, radar, remote sensing, wireless communications, and quantum computing that can benefit from encoding and generation of low noise, high resolution signals.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: February 7, 2023
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Brandon Walter Buckley, David Simon Perlmutter, Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, Jason Thomas Chou
  • Publication number: 20220337317
    Abstract: Devices, methods for analog-to-digital converters (ADCs) that perform high-dynamic range measurements based on optical techniques are disclosed. In one example aspect, an optical encoder includes a polarization rotator configured to receive a train of optical pulses, and an electro-optic (EO) modulator coupled to an output of the polarization rotator. The EO modulator is configured to receive a radio frequency (RF) signal and to produce a phase modulated signal in accordance with the RF signal. The optical encoder also includes a polarizing beam splitter coupled to the output of the EO modulator; and an optical hybrid configured to receive two optical signals from the polarizing beam splitter and to produce four optical outputs that are each phase shifted with respect to one another.
    Type: Application
    Filed: July 17, 2020
    Publication date: October 20, 2022
    Inventors: Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, David Simon Perlmutter, Alexander Thomas Wargo, Jason Thomas Chou
  • Patent number: 11444690
    Abstract: Methods, devices and systems for providing accurate measurements of timing errors using optical techniques are described. An example timing measurement device includes an optical hybrid that receives two optical pulse trains and produces two or more phase shifted optical outputs. The timing measurement device further includes two or more optical filters that receive the outputs of the optical hybrid to produce multiple pulse signals with distinctive frequency bands. The device also includes one or more photodetectors and analog-to-digital converters to receive to produce electrical signals in the digital domain corresponding to the optical outputs of the hybrid. A timing error associated with the optical pulse trains can be determined using the electrical signals in digital domain based on a computed phase difference between a first frequency band signal and a second frequency band signal and a computed frequency difference between the first frequency band signal and the second frequency band.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: September 13, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, David Simon Perlmutter, Joshua Linne Olson, Jason Thomas Chou
  • Publication number: 20220231760
    Abstract: Methods, devices and systems for providing accurate measurements of timing errors using optical techniques are described. An example timing measurement device includes an optical hybrid that receives two optical pulse trains and produces two or more phase shifted optical outputs. The timing measurement device further includes two or more optical filters that receive the outputs of the optical hybrid to produce multiple pulse signals with distinctive frequency bands. The device also includes one or more photodetectors and analog-to-digital converters to receive to produce electrical signals in the digital domain corresponding to the optical outputs of the hybrid. A timing error associated with the optical pulse trains can be determined using the electrical signals in digital domain based on a computed phase difference between a first frequency band signal and a second frequency band signal and a computed frequency difference between the first frequency band signal and the second frequency band.
    Type: Application
    Filed: February 9, 2022
    Publication date: July 21, 2022
    Inventors: Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, David Simon Perlmutter, Joshua Linne Olson, Jason Thomas Chou
  • Publication number: 20220100047
    Abstract: Devices, methods and systems for generating wideband, high-fidelity arbitrary radio frequency (RF) passband signals are described. A voltage tunable optical filter for arbitrary RF passband signal generation includes a first input configured to receive a broadband optical pulse train, a second input configured to receive a first control voltage representative of an amplitude signal, an electrooptic modulator to receive the broadband optical pulse train and the first control voltage, to modulate the broadband optical pulse train in accordance with the amplitude signal, and to produce two complementary optical outputs that form two arms of an interferometer, an optical delay component to impart an optical path difference into one of the complementary outputs of the electrooptic modulator, and a combiner or a splitter to receive two complementary optical outputs of the electrooptic modulator after impartation of the optical path difference and to produce an output interference pattern of fringes.
    Type: Application
    Filed: December 10, 2021
    Publication date: March 31, 2022
    Inventors: Apurva Shantharaj Gowda, Jacky Chak-Kee Chan, Peter Thomas Setsuda DeVore, David Simon Perlmutter, Jason Thomas Chou
  • Publication number: 20220085887
    Abstract: Devices, systems and methods for encoding information using optical components are described. Information associated with a first optical signal (e.g., an optical pump) is encoded onto the phase of a second optical signal (e.g., an optical probe) using cross phase modulation (XPM) in a non-linear optical medium. The optical signals are multiplexed together into the nonlinear optical medium. The probe experiences a modified index of refraction as it propagates through the medium and thus accumulates a phase change proportional to the intensity of the pump. The disclosed devices can be incorporated into larger components and systems for various applications such as scientific diagnostics, radar, remote sensing, wireless communications, and quantum computing that can benefit from encoding and generation of low noise, high resolution signals.
    Type: Application
    Filed: October 13, 2021
    Publication date: March 17, 2022
    Inventors: Brandon Walter Buckley, David Simon Perlmutter, Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, Jason Thomas Chou
  • Patent number: 11209714
    Abstract: Devices, methods and systems for generating wideband, high-fidelity arbitrary radio frequency (RF) passband signals are described. A voltage tunable optical filter for arbitrary RF passband signal generation includes a first input configured to receive a broadband optical pulse train, a second input configured to receive a first control voltage representative of an amplitude signal, an electrooptic modulator to receive the broadband optical pulse train and the first control voltage, to modulate the broadband optical pulse train in accordance with the amplitude signal, and to produce two complementary optical outputs that form two arms of an interferometer, an optical delay component to impart an optical path difference into one of the complementary outputs of the electrooptic modulator, and a combiner or a splitter to receive two complementary optical outputs of the electrooptic modulator after impartation of the optical path difference and to produce an output interference pattern of fringes.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: December 28, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Apurva Shantharaj Gowda, Jacky Chak-Kee Chan, Peter Thomas Setsuda DeVore, David Simon Perlmutter, Jason Thomas Chou
  • Patent number: 11184087
    Abstract: Devices, systems and methods for encoding information using optical components are described. Information associated with a first optical signal (e.g., an optical pump) is encoded onto the phase of a second optical signal (e.g., an optical probe) using cross phase modulation (XPM) in a non-linear optical medium. The optical signals are multiplexed together into the nonlinear optical medium. The probe experiences a modified index of refraction as it propagates through the medium and thus accumulates a phase change proportional to the intensity of the pump. The disclosed devices can be incorporated into larger components and systems for various applications such as scientific diagnostics, radar, remote sensing, wireless communications, and quantum computing that can benefit from encoding and generation of low noise, high resolution signals.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: November 23, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Brandon Walter Buckley, David Simon Perlmutter, Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, Jason Thomas Chou
  • Patent number: 11159241
    Abstract: Devices, methods for analog-to-digital converters (ADCs) that perform high-dynamic range measurements based on optical techniques are disclosed. In one example aspect, an optical encoder includes a polarization rotator configured to receive a train of optical pulses, and an electro-optic (EO) modulator coupled to an output of the polarization rotator. The EO modulator is configured to receive a radio frequency (RF) signal and to produce a phase modulated signal in accordance with the RF signal. The optical encoder also includes a polarizing beam splitter coupled to the output of the EO modulator; and an optical hybrid configured to receive two optical signals from the polarizing beam splitter and to produce four optical outputs that are each phase shifted with respect to one another.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: October 26, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, David Simon Perlmutter, Alexander Thomas Wargo, Jason Thomas Chou
  • Patent number: 11032628
    Abstract: Device, methods and systems for the electronic demodulation of optically phase demodulated signals are described. An example optical local oscillator generator configured to generate a radio frequency (RF) tone at a desired RF frequency includes a first input configured to receive a broadband optical pulse train, a second input coupled to a delay line interferometer to receive a first control voltage for controlling a delay value of the interferometer and to produce an output optical pulse train, a dispersive element, coupled to the delay line interferometer, to map the output optical pulse train to a time-domain modulated optical pulse train, an optical-to-electrical converter, coupled to the dispersive element, to convert the time-domain modulated optical pulse train to an analog electrical signal, and an RF filter, coupled to the optical-to-electrical converter, to filter the analog electrical signal to generate the RF tone at the desired RF frequency.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: June 8, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: David Simon Perlmutter, Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, Jason Thomas Chou
  • Publication number: 20210044353
    Abstract: Devices, systems and methods for encoding information using optical components are described. Information associated with a first optical signal (e.g., an optical pump) is encoded onto the phase of a second optical signal (e.g., an optical probe) using cross phase modulation (XPM) in a non-linear optical medium. The optical signals are multiplexed together into the nonlinear optical medium. The probe experiences a modified index of refraction as it propagates through the medium and thus accumulates a phase change proportional to the intensity of the pump. The disclosed devices can be incorporated into larger components and systems for various applications such as scientific diagnostics, radar, remote sensing, wireless communications, and quantum computing that can benefit from encoding and generation of low noise, high resolution signals.
    Type: Application
    Filed: April 10, 2020
    Publication date: February 11, 2021
    Inventors: Brandon Walter Buckley, David Simon Perlmutter, Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, Jason Thomas Chou
  • Publication number: 20210021337
    Abstract: Methods, devices and systems for providing accurate measurements of timing errors using optical techniques are described. An example timing measurement device includes an optical hybrid that receives two optical pulse trains and produces two or more phase shifted optical outputs. The timing measurement device further includes two or more optical filters that receive the outputs of the optical hybrid to produce multiple pulse signals with distinctive frequency bands. The device also includes one or more photodetectors and analog-to-digital converters to receive to produce electrical signals in the digital domain corresponding to the optical outputs of the hybrid. A timing error associated with the optical pulse trains can be determined using the electrical signals in digital domain based on a computed phase difference between a first frequency band signal and a second frequency band signal and a computed frequency difference between the first frequency band signal and the second frequency band.
    Type: Application
    Filed: June 10, 2020
    Publication date: January 21, 2021
    Inventors: Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, David Simon Perlmutter, Joshua Linne Olson, Jason Thomas Chou
  • Publication number: 20210021914
    Abstract: Device, methods and systems for the electronic demodulation of optically phase demodulated signals are described. An example optical local oscillator generator configured to generate a radio frequency (RF) tone at a desired RF frequency includes a first input configured to receive a broadband optical pulse train, a second input coupled to a delay line interferometer to receive a first control voltage for controlling a delay value of the interferometer and to produce an output optical pulse train, a dispersive element, coupled to the delay line interferometer, to map the output optical pulse train to a time-domain modulated optical pulse train, an optical-to-electrical converter, coupled to the dispersive element, to convert the time-domain modulated optical pulse train to an analog electrical signal, and an RF filter, coupled to the optical-to-electrical converter, to filter the analog electrical signal to generate the RF tone at the desired RF frequency.
    Type: Application
    Filed: May 7, 2020
    Publication date: January 21, 2021
    Inventors: David Simon Perlmutter, Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, Jason Thomas Chou
  • Publication number: 20210018814
    Abstract: Devices, methods and systems for generating wideband, high-fidelity arbitrary radio frequency (RF) passband signals are described. A voltage tunable optical filter for arbitrary RF passband signal generation includes a first input configured to receive a broadband optical pulse train, a second input configured to receive a first control voltage representative of an amplitude signal, an electrooptic modulator to receive the broadband optical pulse train and the first control voltage, to modulate the broadband optical pulse train in accordance with the amplitude signal, and to produce two complementary optical outputs that form two arms of an interferometer, an optical delay component to impart an optical path difference into one of the complementary outputs of the electrooptic modulator, and a combiner or a splitter to receive two complementary optical outputs of the electrooptic modulator after impartation of the optical path difference and to produce an output interference pattern of fringes.
    Type: Application
    Filed: January 24, 2020
    Publication date: January 21, 2021
    Inventors: Apurva Shantharaj Gowda, Jacky Chak-Kee Chan, Peter Thomas Setsuda DeVore, David Simon Perlmutter, Jason Thomas Chou
  • Publication number: 20210021349
    Abstract: Devices, methods for analog-to-digital converters (ADCs) that perform high-dynamic range measurements based on optical techniques are disclosed. In one example aspect, an optical encoder includes a polarization rotator configured to receive a train of optical pulses, and an electro-optic (EO) modulator coupled to an output of the polarization rotator. The EO modulator is configured to receive a radio frequency (RF) signal and to produce a phase modulated signal in accordance with the RF signal. The optical encoder also includes a polarizing beam splitter coupled to the output of the EO modulator; and an optical hybrid configured to receive two optical signals from the polarizing beam splitter and to produce four optical outputs that are each phase shifted with respect to one another.
    Type: Application
    Filed: May 11, 2020
    Publication date: January 21, 2021
    Inventors: Peter Thomas Setsuda DeVore, Apurva Shantharaj Gowda, David Simon Perlmutter, Alexander Thomas Wargo, Jason Thomas Chou
  • Patent number: 10088735
    Abstract: An Optical Information Transfer Enhancer System includes a first system for producing an information bearing first optical wave that is impressed with a first information having a first information strength wherein the first optical wave has a first shape. A second system produces a second optical wave. An information strength enhancer module receives the first and said second optical waves and impresses the first optical wave upon the second optical wave via cross-phase modulation (XPM) to produce an information-strength-enhanced second optical wave having a second information strength that is greater than the first information strength of the first optical wave. Following a center-wavelength changer by an Optical Information Transfer Enhancer System improves its performance.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: October 2, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter Thomas Setsuda DeVore, Jason T. Chou
  • Patent number: 9857660
    Abstract: An Optical Information Transfer Enhancer System includes a first system for producing an information bearing first optical wave that is impressed with a first information having a first information strength wherein the first optical wave has a first shape. A second system produces a second optical wave. An information strength enhancer module receives the first and said second optical waves and impresses the first optical wave upon the second optical wave via cross-phase modulation (XPM) to produce an information-strength-enhanced second optical wave having a second information strength that is greater than the first information strength of the first optical wave. Following a center-wavelength changer by an Optical Information Transfer Enhancer System improves its performance.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: January 2, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter Thomas Setsuda DeVore, Jason T. Chou