Patents by Inventor Peter Tiernan

Peter Tiernan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10626545
    Abstract: The present invention relates to a polymeric material having one or more nanoparticles embedded within the surface layer of a single side of the material. In some embodiments, the nanoparticles are microbiocidal nanoparticles which impart antimicrobial characteristics to the polymeric material within which they sprayed and pushed by are embedded.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 21, 2020
    Assignees: University of Limerick, Wroclaw Medical University, Wroclaw University of Technology
    Inventors: Tofail Syed, Jacek Zeglinski, Patrick Cronin, Halina Podbielska, Ewa Dworniczek, Peter Tiernan, Roman Franiczek, Igor Buzalewicz, Magdalena Wawrzynska
  • Patent number: 9212409
    Abstract: A mixture of powders for preparing a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy includes Ni—Ti alloy powders comprising from about 55 wt. % Ni to about 61 wt. % Ni and from about 39 wt. % Ti to about 45 wt. % Ti, and RE alloy powders comprising a RE element.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: December 15, 2015
    Assignees: Cook Medical Technologies LLC, University of Limerick
    Inventors: Syed A. M. Tofail, James Butler, James M. Carlson, Garry Warren, Abbasi A. Gandhi, Peter Tiernan
  • Patent number: 9074274
    Abstract: A nickel-titanium-rare earth (Ni—Ti-RE) alloy comprises nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, boron at a concentration of up to about 0.1 at. %, with the balance of the alloy being titanium. In addition to enhanced radiopacity compared to binary Ni—Ti alloys and improved workability, the Ni—Ti-RE alloy preferably exhibits superelastic behavior. A method of processing a Ni—Ti-RE alloy includes providing a nickel-titanium-rare earth alloy comprising nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, the balance being titanium; heating the alloy in a homogenization temperature range below a critical temperature; and forming spheroids of a rare earth-rich second phase in the alloy while in the homogenization temperature range.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: July 7, 2015
    Assignees: Cook Medical Technologies LLC, University of Limerick
    Inventors: Syed A. M. Tofail, James M. Carlson, Abbasi A. Gandhi, James Butler, Peter Tiernan, Lisa O'Donoghue
  • Publication number: 20140220091
    Abstract: The present invention relates to a polymeric material having one or more nanoparticles embedded within the surface layer of a single side of the material. In some embodiments, the nanoparticles are microbiocidal nanoparticles which impart antimicrobial characteristics to the polymeric material within which they sprayed and pushed by are embedded.
    Type: Application
    Filed: March 16, 2012
    Publication date: August 7, 2014
    Applicants: UNIVERSITY OF LIMERICK, WROCLAW UNIVERSITY OF TECHNOLOGY, WROCLAW MEDICAL UNIVERSITY
    Inventors: Syed Tofail, Jacek Zeglinski, Patrick Cronin, Halina Podbielska, Ewa Dworniczek, Peter Tiernan, Roman Franiczek, Igor Buzalewicz, Magdalena Wawrzynska
  • Patent number: 8440031
    Abstract: A nickel-titanium-rare earth (Ni—Ti-RE) alloy comprises nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, boron at a concentration of up to about 0.1 at. %, with the balance of the alloy being titanium. In addition to enhanced radiopacity compared to binary Ni—Ti alloys and improved workability, the Ni—Ti-RE alloy preferably exhibits superelastic behavior. A method of processing a Ni—Ti-RE alloy includes providing a nickel-titanium-rare earth alloy comprising nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, the balance being titanium; heating the alloy in a homogenization temperature range below a critical temperature; and forming spheroids of a rare earth-rich second phase in the alloy while in the homogenization temperature range.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: May 14, 2013
    Assignees: Cook Medical Technologies LLC, University of Limerick
    Inventors: Tofail Ansar Md. Syed, James M. Carlson, Abbasi A. Gandhi, Peter Tiernan, Lisa O'Donoghue, James Butler
  • Publication number: 20110114230
    Abstract: A nickel-titanium-rare earth (Ni—Ti-RE) alloy comprises nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, boron at a concentration of up to about 0.1 at. %, with the balance of the alloy being titanium. In addition to enhanced radiopacity compared to binary Ni—Ti alloys and improved workability, the Ni—Ti-RE alloy preferably exhibits superelastic behavior. A method of processing a Ni—Ti-RE alloy includes providing a nickel-titanium-rare earth alloy comprising nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, the balance being titanium; heating the alloy in a homogenization temperature range below a critical temperature; and forming spheroids of a rare earth-rich second phase in the alloy while in the homogenization temperature range.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 19, 2011
    Applicants: Cook Incorporated, University of Limerick
    Inventors: Tofail Ansar Md. Syed, James M. Carlson, Abbasi A. Gandhi, James Butler, Peter Tiernan, Lisa O'Donoghue