Patents by Inventor Peter Vander Horn

Peter Vander Horn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200385786
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 10, 2020
    Inventors: Daniel MAZUR, Eileen TOZER, Sihong CHEN, Peter VANDER HORN, Tommie LINCECUM
  • Publication number: 20200299655
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having lower systematic error as compared to a reference polymerase. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered properties.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Inventors: Peter VANDER HORN, Daniel MAZUR, Theo NIKIFOROV, Mindy LANDES, Eileen TOZER
  • Publication number: 20200277580
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
    Type: Application
    Filed: April 16, 2020
    Publication date: September 3, 2020
    Inventors: Peter VANDER HORN, Theo NIKIFOROV, Guobin LUO, Mindy LANDES, Daniel MAZUR, Eileen TOZER, Tommie LINCECUM
  • Patent number: 10745747
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 18, 2020
    Assignee: Life Technologies Corporation
    Inventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum
  • Publication number: 20200231948
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 23, 2020
    Inventors: Peter VANDER HORN, Cheng-Yao CHEN, Guobin LUO, Michael PREVITE, Jamshid TEMIROV, Theo NIKIFOROV, Zhaohui ZHOU, Hongye SUN, Yufang WANG, Stefanie Yukiko NISHIMURA, Hongyi WANG, Marian PERIS, Barnett ROSENBLUM, Michael PHELAN
  • Patent number: 10676724
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having lower systematic error as compared to a reference polymerase. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered properties.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: June 9, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Peter Vander Horn, Daniel Mazur, Theo Nikiforov, Mindy Landes, Eileen Tozer
  • Patent number: 10633641
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: April 28, 2020
    Assignee: Life Technologies Corporation
    Inventors: Peter Vander Horn, Theo Nikiforov, Guobin Luo, Mindy Landes, Daniel Mazur, Eileen Tozer, Tommie Lloyd Lincecum
  • Patent number: 10597642
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 24, 2020
    Assignee: Life Technologies Corporation
    Inventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
  • Publication number: 20200043571
    Abstract: A method for nucleic acid sequencing includes receiving observed or measured nucleic acid sequencing data from a sequencing instrument that receives and processes a sample nucleic acid in a termination sequencing-by-synthesis process. The method also includes generating a set of candidate sequences of bases for the observed or measured nucleic acid sequencing data by determining a predicted signal for candidate sequences using a simulation framework. The simulation framework incorporates an estimated carry forward rate (CFR), an estimated incomplete extension rate (IER), an estimated droop rate (DR), an estimated reactivated molecules rate (RMR), and an estimated termination failure rate (TFR), the RMR being greater than or equal to zero and the TFR being lesser than one. The method also includes identifying, from the set of candidate sequences of bases, one candidate sequence leading to optimization of a solver function as corresponding to the sequence for the sample nucleic acid.
    Type: Application
    Filed: August 26, 2019
    Publication date: February 6, 2020
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christian KOLLER, Marcin SIKORA, Peter VANDER HORN
  • Patent number: 10544455
    Abstract: In some embodiments, the disclosure relates generally to methods, as well as compositions, systems, kits and apparatuses, for performing nucleotide incorporation, comprising: (a) providing a surface including one or more reaction sites containing a polymerase and a nucleic acid template that has, or is hybridized to, an extendible end; (b) performing a first nucleotide flow by contacting one or more of the reaction sites with a first solution including one or more types of terminator nucleotide; (c) incorporating at least one type of terminator nucleotide at the extendible end of the nucleic acid template contained within at least one of the reaction sites using the polymerase; and (d) detecting a non-optical signal indicating the nucleotide incorporation using a sensor that is attached or operatively linked to the at least one reaction site.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: January 28, 2020
    Assignees: LIFE TECHNOLOGIES CORPORATION, LIFE TECHNOLOGIES GMBH
    Inventors: Wolfgang Hinz, Peter Vander Horn, Earl Hubbell, Christian Woehler
  • Publication number: 20200002688
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having lower systematic error as compared to a reference polymerase. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered properties.
    Type: Application
    Filed: February 7, 2019
    Publication date: January 2, 2020
    Inventors: Peter VANDER HORN, Daniel Mazur, Theo Nikiforov, Mindy Landes, Eileen Tozer
  • Patent number: 10487357
    Abstract: In some embodiments, the disclosure relates generally to methods, as well as related, systems, compositions, kits and apparatuses, for nucleic acid analysis that involve the use of modified nucleotides, including terminator nucleotides and/or tagged nucleotides, in a template-dependent nucleotide incorporation reaction. In some embodiments, the nucleic acid analysis can be conducted at a single reaction site, or at a plurality of reaction sites in an array of reaction sites. Optionally, the array contains a plurality of reaction sites having about 1-100 million, or about 100-250 million, or about 200-500 million, or about 500-900 million, or more reaction sites. Optionally, each reaction site is in contact with, operatively coupled, or capacitively coupled to one or more sensors that are ion-sensitive FETs (isFETs) or chemically-sensitive FETs (chemFETs) sensors. Optionally, the reaction sites are in fluid communication with each other.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: November 26, 2019
    Assignees: Life Technologies Corporation, Life Technologies GmbH
    Inventors: Wolfgang Hinz, Steven Menchen, Ronald Graham, Peter Vander Horn, Earl Hubbell, Christian Woehler, Roman Rozhkov, Barnett Rosenblum
  • Patent number: 10410739
    Abstract: A method for nucleic acid sequencing includes receiving observed or measured nucleic acid sequencing data from a sequencing instrument that receives and processes a sample nucleic acid in a termination sequencing-by-synthesis process. The method also includes generating a set of candidate sequences of bases for the observed or measured nucleic acid sequencing data by determining a predicted signal for candidate sequences using a simulation framework. The simulation framework incorporates an estimated carry forward rate (CFR), an estimated incomplete extension rate (IER), an estimated droop rate (DR), an estimated reactivated molecules rate (RMR), and an estimated termination failure rate (TFR), the RMR being greater than or equal to zero and the TFR being lesser than one. The method also includes identifying, from the set of candidate sequences of bases, one candidate sequence leading to optimization of a solver function as corresponding to the sequence for the sample nucleic acid.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: September 10, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christian Koller, Marcin Sikora, Peter Vander Horn
  • Publication number: 20190270974
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Application
    Filed: May 17, 2019
    Publication date: September 5, 2019
    Inventors: Daniel MAZUR, Peter VANDER HORN, Eileen TOZER, Sihong CHEN, Guobin LUO, Joshua SHIRLEY, Kevin HEINEMANN
  • Patent number: 10344268
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: July 9, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Daniel Mazur, Peter Vander Horn, Eileen Tozer, Sihong Chen, Guobin Luo, Joshua Shirley, Kevin Heinemann
  • Patent number: 10240134
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having lower systematic error as compared to a reference polymerase. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered properties.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 26, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Peter Vander Horn, Daniel Mazur, Theo Nikiforov, Mindy Landes, Eileen Tozer
  • Publication number: 20180312904
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.
    Type: Application
    Filed: April 24, 2018
    Publication date: November 1, 2018
    Inventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum
  • Publication number: 20180305673
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 25, 2018
    Inventors: Peter Vander Horn, Theo Nikiforov, Guobin Luo, Mindy Landes, Daniel Mazur, Eileen Tozer, Tommie Lloyd Lincecum
  • Patent number: 9976128
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: May 22, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Peter Vander Horn, Theo Nikiforov, Guobin Luo, Mindy Landes, Daniel Mazur, Eileen Tozer, Tommie Lincecum
  • Patent number: 9976178
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a reference Taq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: May 22, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum