Patents by Inventor Peter Vander Horn
Peter Vander Horn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220307071Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.Type: ApplicationFiled: April 20, 2022Publication date: September 29, 2022Applicant: Life Technologies CorporationInventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum
-
Patent number: 11447756Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.Type: GrantFiled: March 20, 2020Date of Patent: September 20, 2022Assignee: LIFE TECHNOLOGIES CORPORATIONInventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
-
Publication number: 20220162573Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.Type: ApplicationFiled: December 20, 2021Publication date: May 26, 2022Inventors: Peter VANDER HORN, Theo NIKIFOROV, Guobin LUO, Mindy LANDES, Daniel MAZUR, Eileen TOZER, Tommie LINCECUM
-
Patent number: 11319584Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.Type: GrantFiled: August 14, 2020Date of Patent: May 3, 2022Assignee: Life Technologies CorporationInventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum
-
Patent number: 11208636Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.Type: GrantFiled: April 16, 2020Date of Patent: December 28, 2021Assignee: LIFE TECHNOLOGIES CORPORATIONInventors: Peter Vander Horn, Theo Nikiforov, Guobin Luo, Mindy Landes, Daniel Mazur, Eileen Tozer, Tommie Lincecum
-
Publication number: 20210371834Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having lower systematic error as compared to a reference polymerase. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered properties.Type: ApplicationFiled: August 13, 2021Publication date: December 2, 2021Inventors: Peter VANDER HORN, Daniel MAZUR, Theo NIKIFOROV, Mindy LANDES, Eileen TOZER
-
Patent number: 11091746Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having lower systematic error as compared to a reference polymerase. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered properties.Type: GrantFiled: June 5, 2020Date of Patent: August 17, 2021Assignee: Life Technologies CorporationInventors: Peter Vander Horn, Daniel Mazur, Theo Nikiforov, Mindy Landes, Eileen Tozer
-
Patent number: 11001814Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.Type: GrantFiled: May 17, 2019Date of Patent: May 11, 2021Assignee: Life Technologies CorporationInventors: Daniel Mazur, Peter Vander Horn, Eileen Tozer, Sihong Chen, Guobin Luo, Joshua Shirley, Kevin Heinemann
-
Publication number: 20200385786Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.Type: ApplicationFiled: August 14, 2020Publication date: December 10, 2020Inventors: Daniel MAZUR, Eileen TOZER, Sihong CHEN, Peter VANDER HORN, Tommie LINCECUM
-
Publication number: 20200299655Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having lower systematic error as compared to a reference polymerase. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered properties.Type: ApplicationFiled: June 5, 2020Publication date: September 24, 2020Inventors: Peter VANDER HORN, Daniel MAZUR, Theo NIKIFOROV, Mindy LANDES, Eileen TOZER
-
Publication number: 20200277580Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.Type: ApplicationFiled: April 16, 2020Publication date: September 3, 2020Inventors: Peter VANDER HORN, Theo NIKIFOROV, Guobin LUO, Mindy LANDES, Daniel MAZUR, Eileen TOZER, Tommie LINCECUM
-
Patent number: 10745747Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.Type: GrantFiled: April 24, 2018Date of Patent: August 18, 2020Assignee: Life Technologies CorporationInventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum
-
Publication number: 20200231948Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.Type: ApplicationFiled: March 20, 2020Publication date: July 23, 2020Inventors: Peter VANDER HORN, Cheng-Yao CHEN, Guobin LUO, Michael PREVITE, Jamshid TEMIROV, Theo NIKIFOROV, Zhaohui ZHOU, Hongye SUN, Yufang WANG, Stefanie Yukiko NISHIMURA, Hongyi WANG, Marian PERIS, Barnett ROSENBLUM, Michael PHELAN
-
Patent number: 10676724Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having lower systematic error as compared to a reference polymerase. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered properties.Type: GrantFiled: February 7, 2019Date of Patent: June 9, 2020Assignee: LIFE TECHNOLOGIES CORPORATIONInventors: Peter Vander Horn, Daniel Mazur, Theo Nikiforov, Mindy Landes, Eileen Tozer
-
Patent number: 10633641Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.Type: GrantFiled: April 23, 2018Date of Patent: April 28, 2020Assignee: Life Technologies CorporationInventors: Peter Vander Horn, Theo Nikiforov, Guobin Luo, Mindy Landes, Daniel Mazur, Eileen Tozer, Tommie Lloyd Lincecum
-
Patent number: 10597642Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.Type: GrantFiled: August 30, 2017Date of Patent: March 24, 2020Assignee: Life Technologies CorporationInventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
-
Publication number: 20200043571Abstract: A method for nucleic acid sequencing includes receiving observed or measured nucleic acid sequencing data from a sequencing instrument that receives and processes a sample nucleic acid in a termination sequencing-by-synthesis process. The method also includes generating a set of candidate sequences of bases for the observed or measured nucleic acid sequencing data by determining a predicted signal for candidate sequences using a simulation framework. The simulation framework incorporates an estimated carry forward rate (CFR), an estimated incomplete extension rate (IER), an estimated droop rate (DR), an estimated reactivated molecules rate (RMR), and an estimated termination failure rate (TFR), the RMR being greater than or equal to zero and the TFR being lesser than one. The method also includes identifying, from the set of candidate sequences of bases, one candidate sequence leading to optimization of a solver function as corresponding to the sequence for the sample nucleic acid.Type: ApplicationFiled: August 26, 2019Publication date: February 6, 2020Applicant: LIFE TECHNOLOGIES CORPORATIONInventors: Christian KOLLER, Marcin SIKORA, Peter VANDER HORN
-
Patent number: 10544455Abstract: In some embodiments, the disclosure relates generally to methods, as well as compositions, systems, kits and apparatuses, for performing nucleotide incorporation, comprising: (a) providing a surface including one or more reaction sites containing a polymerase and a nucleic acid template that has, or is hybridized to, an extendible end; (b) performing a first nucleotide flow by contacting one or more of the reaction sites with a first solution including one or more types of terminator nucleotide; (c) incorporating at least one type of terminator nucleotide at the extendible end of the nucleic acid template contained within at least one of the reaction sites using the polymerase; and (d) detecting a non-optical signal indicating the nucleotide incorporation using a sensor that is attached or operatively linked to the at least one reaction site.Type: GrantFiled: September 16, 2015Date of Patent: January 28, 2020Assignees: LIFE TECHNOLOGIES CORPORATION, LIFE TECHNOLOGIES GMBHInventors: Wolfgang Hinz, Peter Vander Horn, Earl Hubbell, Christian Woehler
-
Publication number: 20200002688Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having lower systematic error as compared to a reference polymerase. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered properties.Type: ApplicationFiled: February 7, 2019Publication date: January 2, 2020Inventors: Peter VANDER HORN, Daniel Mazur, Theo Nikiforov, Mindy Landes, Eileen Tozer
-
Patent number: 10487357Abstract: In some embodiments, the disclosure relates generally to methods, as well as related, systems, compositions, kits and apparatuses, for nucleic acid analysis that involve the use of modified nucleotides, including terminator nucleotides and/or tagged nucleotides, in a template-dependent nucleotide incorporation reaction. In some embodiments, the nucleic acid analysis can be conducted at a single reaction site, or at a plurality of reaction sites in an array of reaction sites. Optionally, the array contains a plurality of reaction sites having about 1-100 million, or about 100-250 million, or about 200-500 million, or about 500-900 million, or more reaction sites. Optionally, each reaction site is in contact with, operatively coupled, or capacitively coupled to one or more sensors that are ion-sensitive FETs (isFETs) or chemically-sensitive FETs (chemFETs) sensors. Optionally, the reaction sites are in fluid communication with each other.Type: GrantFiled: March 18, 2016Date of Patent: November 26, 2019Assignees: Life Technologies Corporation, Life Technologies GmbHInventors: Wolfgang Hinz, Steven Menchen, Ronald Graham, Peter Vander Horn, Earl Hubbell, Christian Woehler, Roman Rozhkov, Barnett Rosenblum