Patents by Inventor Peter Vaughan
Peter Vaughan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10236763Abstract: A switching circuit with reverse current prevention for use in a Buck converter includes a power switch coupled to a coupling node, which is an interconnection point of a power switch, an inductor and a freewheeling diode of the Buck converter. The inductor is coupled between the coupling node and an output of the Buck converter, and the freewheeling diode is coupled between coupling node and an output return of the Buck converter. A controller is coupled to receive a feedback signal to control switching of the power switch to regulate a transfer of energy from the input to the output of the Buck converter. A reverse current prevention circuit is coupled to detect a reverse current condition of the power switch to generate an inhibit signal to inhibit the power switch from receiving a drive signal to prevent a reverse current through the power switch.Type: GrantFiled: August 4, 2015Date of Patent: March 19, 2019Assignee: Power Integrations, Inc.Inventors: Zongqi Hu, Tiziano Pastore, Peter Vaughan, Yury Gaknoki, Jose Requinton Del Carmen, Jr., Sundaresan Sundararaj
-
Patent number: 10171000Abstract: A power converter controller includes a drive circuit to generate a drive signal to control switching of a power switch. The drive circuit generates the drive signal in response to a current sense signal, a current limit signal, a frequency skip signal, and a hold signal. A current limit generator generates the current limit signal in response to a load. A frequency detection circuit generates the frequency skip signal in response to the drive signal to indicate when an intended frequency of the drive signal is within a frequency window. The current limit signal remains fixed for at least a switching cycle when the intended frequency is within the frequency window. A first latch generates the hold signal to control the current limit generator to hold the current limit signal. The first latch generates the hold signal in response to the frequency skip signal and a feedback signal.Type: GrantFiled: May 14, 2018Date of Patent: January 1, 2019Assignee: Power Integrations, Inc.Inventors: Vikram Balakrishnan, Giao Minh Pham, Ricardo Luis Janezic Pregitzer, Peter Vaughan
-
Patent number: 10150380Abstract: Dynamic allocation of power modules for charging electric vehicles is described herein. A power cabinet includes multiple power modules that each are capable of supplying an amount of power to a dispenser. Multiple dispensers are coupled with the same power cabinet. A first power bus couples a first dispenser and switchably connects the power modules to the first dispenser; and a second power bus couples a second dispenser and switchably connects the power modules to the second dispenser. The power cabinet includes a control unit that is configured to cause the power modules to switchably connect and disconnect from the first power bus and the second power bus to dynamically allocate the power modules between the first dispenser and the second dispenser.Type: GrantFiled: March 23, 2016Date of Patent: December 11, 2018Assignee: CHARGEPOINT, INC.Inventors: Peter Vaughan, David Baxter, Carl F. Hagenmaier, Jr., Patrick Kien Tran, Craig T. Matsuno, Gary A Eldridge, Pasquale Romano
-
Patent number: 10135343Abstract: A controller for use in a power converter that includes a current limit generator coupled to receive a feedback signal representative of an output of the power converter and generate an initial current limit signal. The controller includes a modulation circuit coupled to output a modulation signal which is a percentage of the initial current limit signal. An arithmetic operator is coupled to receive the initial current limit and selectively receive the modulation signal and output a current limit. A comparator is coupled to receive a current sense signal representative of a switch current conducted by a primary switch. A drive circuit is coupled to generate a drive signal to control switching of the primary switch to regulate the output of the power converter in response to the comparator output signal, and the drive circuit turns off the primary switch when the switch current has reached the current limit.Type: GrantFiled: May 8, 2018Date of Patent: November 20, 2018Assignee: Power Integrations, Inc.Inventors: Alex B. Djenguerian, Peter Vaughan, Leif Lund
-
Publication number: 20180304757Abstract: An electric vehicle charging station that uses a liquid cooled charging cable is described. The charging station includes a charging port that is configured to connect to a liquid cooled charging cable. The liquid cooled charging cable includes a cooling loop where a return side of the cooling loop is a warm side. The charging station includes a heat exchanger that transfers heat from the warm side of the cooling loop. The charging station includes a pump to pump a cool side of the liquid through the cooling loop. The charging station includes a module that causes the following to be performed in response to a startup sequence of the electric vehicle charging station: iteratively perform operations of operating the pump at increasing speeds and measuring corresponding pressure output until the speed of the pump is at its normal capacity.Type: ApplicationFiled: April 24, 2018Publication date: October 25, 2018Inventor: Peter Vaughan
-
Publication number: 20180262114Abstract: A power converter controller includes a drive circuit to generate a drive signal to control switching of a power switch. The drive circuit generates the drive signal in response to a current sense signal, a current limit signal, a frequency skip signal, and a hold signal. A current limit generator generates the current limit signal in response to a load. A frequency detection circuit generates the frequency skip signal in response to the drive signal to indicate when an intended frequency of the drive signal is within a frequency window. The current limit signal remains fixed for at least a switching cycle when the intended frequency is within the frequency window. A first latch generates the hold signal to control the current limit generator to hold the current limit signal. The first latch generates the hold signal in response to the frequency skip signal and a feedback signal.Type: ApplicationFiled: May 14, 2018Publication date: September 13, 2018Inventors: Vikram Balakrishnan, Giao Minh Pham, Ricardo Luis Janezic Pregitzer, Peter Vaughan
-
Publication number: 20180254709Abstract: A controller for use in a power converter that includes a current limit generator coupled to receive a feedback signal representative of an output of the power converter and generate an initial current limit signal. The controller includes a modulation circuit coupled to output a modulation signal which is a percentage of the initial current limit signal. An arithmetic operator is coupled to receive the initial current limit and selectively receive the modulation signal and output a current limit. A comparator is coupled to receive a current sense signal representative of a switch current conducted by a primary switch. A drive circuit is coupled to generate a drive signal to control switching of the primary switch to regulate the output of the power converter in response to the comparator output signal, and the drive circuit turns off the primary switch when the switch current has reached the current limit.Type: ApplicationFiled: May 8, 2018Publication date: September 6, 2018Inventors: Alex B. Djenguerian, Peter Vaughan, Leif Lund
-
Patent number: 10003270Abstract: A controller includes a drive circuit that generates a drive signal to switch a power switch to control a transfer of energy to of a power converter output in response to a current sense signal, a feedback signal, and a current limit signal. A current limit generator generates the current limit signal in response to a load coupled to the output. An exclusion frequency range detection circuit generates a frequency skip signal in response to the drive signal to indicate when an intended frequency of the drive signal is within an exclusion frequency window. The current limit signal is unvarying for at least a switching cycle when the intended frequency of the drive signal is within the exclusion frequency window. A first latch generates a hold signal to control the current limit generator to hold the current limit signal in response to the frequency skip signal and the feedback signal.Type: GrantFiled: December 26, 2017Date of Patent: June 19, 2018Assignee: Power Integrations, Inc.Inventors: Vikram Balakrishnan, Giao Minh Pham, Ricardo Luis Janezic Pregitzer, Peter Vaughan
-
Patent number: 9979296Abstract: A controller for use in a power converter includes a comparator to compare a current sense signal with a current limit to generate a comparator output signal representative of whether a switch current has reached the current limit. A drive circuit controls switching of a power switch to regulate an output of the power converter in response to a feedback signal and the comparator output signal. The drive circuit turns off the power switch in response to the comparator output signal. A current limit generator generates an initial current limit in response to the feedback signal. The current limit is responsive to the initial current limit. A light load sense circuit outputs a light load signal in response to sensing a light load condition of the power converter. A modulation circuit outputs a modulation signal and modulates the initial current limit in response to the light load signal.Type: GrantFiled: August 18, 2016Date of Patent: May 22, 2018Assignee: Power Integrations, Inc.Inventors: Alex B. Djenguerian, Peter Vaughan, Leif Lund
-
Publication number: 20180123465Abstract: A controller includes a drive circuit that generates a drive signal to switch a power switch to control a transfer of energy to of a power converter output in response to a current sense signal, a feedback signal, and a current limit signal. A current limit generator generates the current limit signal in response to a load coupled to the output. An exclusion frequency range detection circuit generates a frequency skip signal in response to the drive signal to indicate when an intended frequency of the drive signal is within an exclusion frequency window. The current limit signal is unvarying for at least a switching cycle when the intended frequency of the drive signal is within the exclusion frequency window. A first latch generates a hold signal to control the current limit generator to hold the current limit signal in response to the frequency skip signal and the feedback signal.Type: ApplicationFiled: December 26, 2017Publication date: May 3, 2018Inventors: Vikram Balakrishnan, Giao Minh Pham, Ricardo Luis Janezic Pregitzer, Peter Vaughan
-
Patent number: 9893630Abstract: A power converter controller includes a drive circuit that generates a drive signal to switch a power switch to control a transfer of energy to an output of the power converter in response to a current sense signal, a feedback signal, and a current limit signal. A current limit generator generates the current limit signal in response to a load coupled to the output. An audible noise detection circuit generates a frequency skip signal in response to the drive signal to indicate when an intended frequency of the drive signal is within an audible noise frequency window. A state of the current limit signal fixed when the intended frequency of the drive signal is within the audible noise frequency window. A first latch generates a hold signal to control the current limit generator to hold the current limit signal in response to the frequency skip signal and the feedback signal.Type: GrantFiled: February 26, 2016Date of Patent: February 13, 2018Assignee: Power Integrations, Inc.Inventors: Vikram Balakrishnan, Giao Minh Pham, Ricardo Luis Janezic Pregitzer, Peter Vaughan
-
Patent number: 9876433Abstract: A controller for use in a power converter includes a drive circuit coupled to generate a drive signal to control switching of a power switch of the power converter in response to a feedback signal to control a transfer of energy from an input to an output of the power converter. An audible noise window circuit is coupled to generate a frequency skip signal in response to the feedback signal. The frequency skip signal is activated in response to a frequency of a feedback request signal responsive to the feedback signal being within an audible noise window. An audible noise reduction circuit is coupled to output a reduction signal in response to the frequency skip signal. The drive circuit is coupled to generate the drive signal in response to the reduction signal from the audible noise reduction circuit.Type: GrantFiled: February 26, 2016Date of Patent: January 23, 2018Assignee: Power Integrations, Inc.Inventors: Ricardo Luis Janezic Pregitzer, Peter Vaughan
-
Publication number: 20180001781Abstract: Dynamic allocation of power modules for charging electric vehicles is described herein. The charging system includes multiple dispensers that each include one or more power modules that can supply power to any one of the dispensers at a time. A dispenser includes a first power bus that is switchably connected to one or more local power modules and switchably connected to one or more power modules located remotely in another dispenser. The one or more local power modules are switchably connected to a second power bus in the other dispenser. The dispenser includes a control unit that is to cause the local power modules and the remote power modules to switchably connect and disconnect from the first power bus to dynamically allocate the power modules between the dispenser and the other dispenser.Type: ApplicationFiled: May 25, 2017Publication date: January 4, 2018Inventors: Richard J. Quattrini, JR., Peter Vaughan, David Baxter, Carl F. Hagenmaier, JR., Patrick Kien Tran, Craig T. Matsuno, Gary A. Eldridge, Pasquale Romano
-
Publication number: 20170274792Abstract: Dynamic allocation of power modules for charging electric vehicles is described herein. A power cabinet includes multiple power modules that each are capable of supplying an amount of power to a dispenser. Multiple dispensers are coupled with the same power cabinet. A first power bus couples a first dispenser and switchably connects the power modules to the first dispenser; and a second power bus couples a second dispenser and switchably connects the power modules to the second dispenser. The power cabinet includes a control unit that is configured to cause the power modules to switchably connect and disconnect from the first power bus and the second power bus to dynamically allocate the power modules between the first dispenser and the second dispenser.Type: ApplicationFiled: March 23, 2016Publication date: September 28, 2017Inventors: Peter Vaughan, David Baxter, Carl F. Hagenmaier, JR., Patrick Kien Tran, Craig T. Matsuno, Gary A. Eldridge, Pasquale Romano
-
Patent number: 9769901Abstract: A bleeder circuit includes an input current sense circuit, coupled to one of first and second input terminals of a driver circuit, to output a bleeder on/off signal in response to an input current through the first and second input terminals of the driver circuit. A variable current circuit is coupled between the first and second input terminals of the driver circuit and coupled to the input current sense circuit. The variable current circuit is coupled to conduct a bleeder current between the first and second input terminals in response to the bleeder on/off signal. A current scaling circuit is coupled to the variable current circuit to output a current scale signal which is received by the variable current circuit in response to a shutdown signal. The shutdown signal is representative of a conduction angle.Type: GrantFiled: June 14, 2016Date of Patent: September 19, 2017Assignee: Power Integrations, Inc.Inventors: Peter Vaughan, Christian Pura Angeles
-
Publication number: 20170250614Abstract: A controller for use in a power converter includes a drive circuit coupled to generate a drive signal to control switching of a power switch of the power converter in response to a feedback signal to control a transfer of energy from an input to an output of the power converter. An audible noise window circuit is coupled to generate a frequency skip signal in response to the feedback signal. The frequency skip signal is activated in response to a frequency of a feedback request signal responsive to the feedback signal being within an audible noise window. An audible noise reduction circuit is coupled to output a reduction signal in response to the frequency skip signal. The drive circuit is coupled to generate the drive signal in response to the reduction signal from the audible noise reduction circuit.Type: ApplicationFiled: February 26, 2016Publication date: August 31, 2017Inventors: Ricardo Luis Janezic Pregitzer, Peter Vaughan
-
Publication number: 20170250613Abstract: A power converter controller includes a drive circuit that generates a drive signal to switch a power switch to control a transfer of energy to an output of the power converter in response to a current sense signal, a feedback signal, and a current limit signal. A current limit generator generates the current limit signal in response to a load coupled to the output. An audible noise detection circuit generates a frequency skip signal in response to the drive signal to indicate when an intended frequency of the drive signal is within an audible noise frequency window. A state of the current limit signal fixed when the intended frequency of the drive signal is within the audible noise frequency window. A first latch generates a hold signal to control the current limit generator to hold the current limit signal in response to the frequency skip signal and the feedback signal.Type: ApplicationFiled: February 26, 2016Publication date: August 31, 2017Inventors: Vikram Balakrishnan, Giao Minh Pham, Ricardo Luis Janezic Pregitzer, Peter Vaughan
-
Patent number: 9680382Abstract: A frequency determination circuit includes a positive crossing sense circuit coupled to receive an input voltage to sense a positive crossing of an input voltage. A validation circuit is coupled to the positive crossing sense circuit to validate a previous zero crossing and the positive crossing of the input voltage after the positive crossing of the of the input voltage has occurred. A measurement circuit is coupled to the positive crossing sense circuit and the validation circuit to count a time between positive crossing pulses of the input voltage. The measurement circuit is coupled to output a frequency signal that is representative of a frequency of the input voltage in response to the time between the positive crossing pulses of the input voltage.Type: GrantFiled: August 3, 2015Date of Patent: June 13, 2017Assignee: Power Integrations, Inc.Inventors: Peter Vaughan, Christian Pura Angeles
-
Patent number: 9602013Abstract: A controller for controlling a power supply includes a feedback signal generator to generate a feedback signal representative of an output current in response to an output sense signal. A state selector circuit receives the feedback signal and outputs a digital state signal to set an operational state of a switch of the power supply. The state selector circuit adjusts the digital state signal in response to feedback information at an end of a feedback period. A driver circuit receives the digital state signal and generates a drive signal in response to the digital state signal. The drive signal drives switching of the switch in accordance with the operational state of the switch.Type: GrantFiled: May 13, 2014Date of Patent: March 21, 2017Assignee: Power Integrations, Inc.Inventors: Tiziano Pastore, Ricardo Luis Janezic Pregitzer, Mingming Mao, Peter Vaughan
-
Publication number: 20170040900Abstract: A frequency determination circuit includes a positive crossing sense circuit coupled to receive an input voltage to sense a positive crossing of an input voltage. A validation circuit is coupled to the positive crossing sense circuit to validate a previous zero crossing and the positive crossing of the input voltage after the positive crossing of the of the input voltage has occurred. A measurement circuit is coupled to the positive crossing sense circuit and the validation circuit to count a time between positive crossing pulses of the input voltage. The measurement circuit is coupled to output a frequency signal that is representative of a frequency of the input voltage in response to the time between the positive crossing pulses of the input voltage.Type: ApplicationFiled: August 3, 2015Publication date: February 9, 2017Inventors: Peter Vaughan, Christian Pura Angeles