Patents by Inventor Peter Votruba-Drzal

Peter Votruba-Drzal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10100216
    Abstract: A coating composition having a measured solids content of at least 95% according to test method ASTM D2369 is disclosed. The composition includes a mixture of (a) a polymer prepared from one or more functional monomers having a (meth)acrylic monomer, an allyl monomer, or combinations thereof each having an ethylenically unsaturated double bond and an additional reactive functional group, and (b) a reactive diluent. At least some of the additional reactive functional group of the functional monomer remains unreacted during formation of the polymer. The reactive diluent has at least one ethylenically unsaturated functional group, no additional functionality, and a boiling point of greater than 100° C. The ethylenically unsaturated functional group of the reactive diluent and the additional reactive functional group remaining within the polymer do not react. Also disclosed are coatings formed from the cured coating composition and methods for providing sound and vibration damping through a substrate.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: October 16, 2018
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Tien-Chieh Chao, Wei Wang, Peter Votruba-Drzal
  • Patent number: 9546326
    Abstract: The present invention is directed to methods of separating a fluid emulsion stream into a hydrocarbon stream and an aqueous stream, by contacting the stream with a microporous membrane to yield a hydrocarbon product stream and an aqueous product stream. The membrane comprises a substantially hydrophobic, polymeric matrix, and substantially hydrophilic, finely divided, particulate, substantially water-insoluble filler distributed throughout the matrix. The polymeric matrix has a mean pore size less than 1.0 micron, and the purities of the product streams are independent of the flux rate of the aqueous product stream and the pore size of the membrane.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: January 17, 2017
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, Carol L. Knox, Truman Wilt, Peter Votruba-Drzal, Charles F. Kahle, Gregory J. McCollum
  • Publication number: 20160168413
    Abstract: A coating composition having a measured solids content of at least 95% according to test method ASTM D2369 is disclosed. The composition includes a mixture of (a) a polymer prepared from one or more functional monomers having a (meth)acrylic monomer, an allyl monomer, or combinations thereof each having an ethylenically unsaturated double bond and an additional reactive functional group, and (b) a reactive diluent. At least some of the additional reactive functional group of the functional monomer remains unreacted during formation of the polymer. The reactive diluent has at least one ethylenically unsaturated functional group, no additional functionality, and a boiling point of greater than 100° C. The ethylenically unsaturated functional group of the reactive diluent and the additional reactive functional group remaining within the polymer do not react. Also disclosed are coatings formed from the cured coating composition and methods for providing sound and vibration damping through a substrate.
    Type: Application
    Filed: December 15, 2014
    Publication date: June 16, 2016
    Inventors: Tien-Chieh Chao, Wei Wang, Peter Votruba-Drzal
  • Publication number: 20140246356
    Abstract: The present invention is directed to methods of separating a fluid emulsion stream into a hydrocarbon stream and an aqueous stream, by contacting the stream with a microporous membrane to yield a hydrocarbon product stream and an aqueous product stream. The membrane comprises a substantially hydrophobic, polymeric matrix, and substantially hydrophilic, finely divided, particulate, substantially water-insoluble filler distributed throughout the matrix. The polymeric matrix has a mean pore size less than 1.0 micron, and the purities of the product streams are independent of the flux rate of the aqueous product stream and the pore size of the membrane.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Inventors: Qunhui Guo, Carol L. Knox, Truman Wilt, Peter Votruba-Drzal, Charles F. Kahle, Gregory J. McCollum