Patents by Inventor Peter W. Evans
Peter W. Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12199405Abstract: Consistent with the present disclosure, a compact laser with extended tunability (CLET) is provided that includes multiple segments or sections, at least one of which is curved, bent or non-collinear with other segments, so that the CLET has a compact form factor either as a singular laser or when integrated with other devices. The term CLET, as used herein, refers to any of the laser configurations disclosed herein having mirrors and a bent, angled or curved part, portion or section between such mirrors. If bent, the bent portion is preferably oriented at an angle of at least 30 degrees relative to other portions of the CLET. Alternatively, the curve or bend portion may be distributed over different sections of the CLET over a series of arcs, for example. The waveguide extending between the mirrors is continuous, such that light propagating along the waveguide is not divided or split. The waveguide also constitutes a continuous waveguide path.Type: GrantFiled: August 16, 2016Date of Patent: January 14, 2025Assignee: Infinera CorporationInventors: Peter W. Evans, Fred A. Kish, Jr., Vikrant Lal, Scott Corzine, Mingzhi Lu
-
Patent number: 11929826Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides.Type: GrantFiled: November 13, 2018Date of Patent: March 12, 2024Assignee: Infinera CorporationInventors: Jeffrey T. Rahn, Fred A. Kish, Jr., Michael Reffle, Peter W. Evans, Vikrant Lal
-
Publication number: 20230141290Abstract: Consistent with the present disclosure, a DDR photodiode is provided on a substrate adjacent to a passive waveguide. In order to efficiently capture light output from the waveguide, the photodiode is coupled to the waveguide with a butt-joint. As a result, the photodiode and the waveguide abut one another such that the dominant mode of light propagating in the waveguide parallel to the substrate is supplied directly to a side of the absorber layer of the photodiode without, in one example, evanescent coupling, nor is a resonant coupler required to supply light to the photodiode. Thus, light is absorbed more efficiently in the photodiode such that the photodiode may have a shorter length. In addition, since substantially all light is input to the photodiode, nearly complete absorption and nearly ideal quantum efficiency can be achieved in a relatively short length. Further, the improved linearity associated with DDR photodiodes is preserved with the exemplary butt joint configurations disclosed herein.Type: ApplicationFiled: December 31, 2022Publication date: May 11, 2023Applicant: Infinera CorporationInventors: Mingzhi Lu, Peter W. Evans
-
Publication number: 20230141436Abstract: Consistent with the present disclosure, a DDR photodiode is provided on a substrate adjacent to a passive waveguide. In order to efficiently capture light output from the waveguide, the photodiode is coupled to the waveguide with a butt-joint. As a result, the photodiode and the waveguide abut one another such that the dominant mode of light propagating in the waveguide parallel to the substrate is supplied directly to a side of the absorber layer of the photodiode without, in one example, evanescent coupling, nor is a resonant coupler required to supply light to the photodiode. Thus, light is absorbed more efficiently in the photodiode such that the photodiode may have a shorter length. In addition, since substantially all light is input to the photodiode, nearly complete absorption and nearly ideal quantum efficiency can be achieved in a relatively short length. Further, the improved linearity associated with DDR photodiodes is preserved with the exemplary butt joint configurations disclosed herein.Type: ApplicationFiled: December 31, 2022Publication date: May 11, 2023Applicant: Infinera CorporationInventors: Mingzhi Lu, Peter W. Evans
-
Publication number: 20230142387Abstract: Consistent with the present disclosure, a DDR photodiode is provided on a substrate adjacent to a passive waveguide. In order to efficiently capture light output from the waveguide, the photodiode is coupled to the waveguide with a butt-joint. As a result, the photodiode and the waveguide abut one another such that the dominant mode of light propagating in the waveguide parallel to the substrate is supplied directly to a side of the absorber layer of the photodiode without, in one example, evanescent coupling, nor is a resonant coupler required to supply light to the photodiode. Thus, light is absorbed more efficiently in the photodiode such that the photodiode may have a shorter length. In addition, since substantially all light is input to the photodiode, nearly complete absorption and nearly ideal quantum efficiency can be achieved in a relatively short length. Further, the improved linearity associated with DDR photodiodes is preserved with the exemplary butt joint configurations disclosed herein.Type: ApplicationFiled: December 31, 2022Publication date: May 11, 2023Applicant: Infinera CorporationInventors: Mingzhi Lu, Peter W. Evans
-
Publication number: 20230133616Abstract: Consistent with the present disclosure, a DDR photodiode is provided on a substrate adjacent to a passive waveguide. In order to efficiently capture light output from the waveguide, the photodiode is coupled to the waveguide with a butt-joint. As a result, the photodiode and the waveguide abut one another such that the dominant mode of light propagating in the waveguide parallel to the substrate is supplied directly to a side of the absorber layer of the photodiode without, in one example, evanescent coupling, nor is a resonant coupler required to supply light to the photodiode. Thus, light is absorbed more efficiently in the photodiode such that the photodiode may have a shorter length. In addition, since substantially all light is input to the photodiode, nearly complete absorption and nearly ideal quantum efficiency can be achieved in a relatively short length. Further, the improved linearity associated with DDR photodiodes is preserved with the exemplary butt joint configurations disclosed herein.Type: ApplicationFiled: December 31, 2022Publication date: May 4, 2023Applicant: Infinera CorporationInventors: Mingzhi Lu, Peter W. Evans
-
Publication number: 20220173258Abstract: Consistent with the present disclosure, a DDR photodiode is provided on a substrate adjacent to a passive waveguide. In order to efficiently capture light output from the waveguide, the photodiode is coupled to the waveguide with a butt-joint. As a result, the photodiode and the waveguide abut one another such that the dominant mode of light propagating in the waveguide parallel to the substrate is supplied directly to a side of the absorber layer of the photodiode without, in one example, evanescent coupling, nor is a resonant coupler required to supply light to the photodiode. Thus, light is absorbed more efficiently in the photodiode such that the photodiode may have a shorter length. In addition, since substantially all light is input to the photodiode, nearly complete absorption and nearly ideal quantum efficiency can be achieved in a relatively short length. Further, the improved linearity associated with DDR photodiodes is preserved with the exemplary butt joint configurations disclosed herein.Type: ApplicationFiled: November 30, 2020Publication date: June 2, 2022Inventors: Mingzhi Lu, Peter W. Evans
-
Publication number: 20220173257Abstract: Consistent with the present disclosure, a DDR photodiode is provided on a substrate adjacent to a passive waveguide. In order to efficiently capture light output from the waveguide, the photodiode is coupled to the waveguide with a butt-joint. As a result, the photodiode and the waveguide abut one another such that the dominant mode of light propagating in the waveguide parallel to the substrate is supplied directly to a side of the absorber layer of the photodiode without, in one example, evanescent coupling, nor is a resonant coupler required to supply light to the photodiode. Thus, light is absorbed more efficiently in the photodiode such that the photodiode may have a shorter length. In addition, since substantially all light is input to the photodiode, nearly complete absorption and nearly ideal quantum efficiency can be achieved in a relatively short length. Further, the improved linearity associated with DDR photodiodes is preserved with the exemplary butt joint configurations disclosed herein.Type: ApplicationFiled: November 29, 2020Publication date: June 2, 2022Inventors: MINGZHI LU, Peter W. Evans
-
Patent number: 10741999Abstract: Methods, systems, and apparatus, including a laser including a layer having first and second regions, the first region including a void; a mirror section provided on the layer, the mirror section including a waveguide core, at least part of the waveguide core is provided over at least a portion of the void; a first grating provided on the waveguide core; a first cladding layer provided between the layer and the waveguide core and supported by the second region of the layer; a second cladding layer provided on the waveguide core; and a heat source configured to change a temperature of at least one of the waveguide core and the grating, where an optical mode propagating in the waveguide core of the mirror section does not incur substantial loss due to interaction with portions of the mirror section above and below the waveguide core.Type: GrantFiled: January 9, 2018Date of Patent: August 11, 2020Assignee: Infinera CoroprationInventors: Peter W. Evans, Mingzhi Lu, Fred A. Kish, Jr., Vikrant Lal, Scott Corzine, John W. Osenbach, Jin Yan
-
Patent number: 10707965Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.Type: GrantFiled: January 7, 2019Date of Patent: July 7, 2020Assignee: Infinera CorporationInventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Klsh, Jr., Donald J. Pavinski, Jie Tang, David Coult
-
Patent number: 10651627Abstract: Methods, systems, and apparatus, including an optical receiver including an optical source, including a substrate; a laser provided on the substrate, the laser having first and second sides and outputting first light from the first side and second light from the second side, the first light output from the first side of the laser has a first power and the second light output from the second side has a second power; and a first modulator that receives the first light and a second modulator that receives the second light, such that the power of the first light at an input of the first modulator is substantially equal to the power of the second light at an input of the second modulator.Type: GrantFiled: January 4, 2017Date of Patent: May 12, 2020Assignee: Infinera CorporatonInventors: Peter W. Evans, Jeffrey T. Rahn, Vikrant Lal, Miguel Iglesias Olmedo, Amir Hosseini, Parmijit Samra, Scott Corzine, Ryan W. Going
-
Publication number: 20190339468Abstract: Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel.Type: ApplicationFiled: May 7, 2018Publication date: November 7, 2019Applicant: Infinera CorporationInventors: Peter W. Evans, Fred A. Kish, JR., Vikrant Lal, Jacco Pleumeekers, Timothy Butrie, David G. Coult, John W. Osenbach, Jie Tang, Jiaming Zhang
-
Publication number: 20190342009Abstract: Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel.Type: ApplicationFiled: May 7, 2018Publication date: November 7, 2019Applicant: Infinera CorporationInventors: Peter W. Evans, Fred A. Kish, JR., Vikrant Lal, Jacco Ploumeekers, Timothy Butrie, David G. Coult, John W. Osenbach, Jie Tang, Jiaming Zhang
-
Publication number: 20190342010Abstract: Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel.Type: ApplicationFiled: May 7, 2018Publication date: November 7, 2019Applicant: Infinera CorporationInventors: Peter W. Evans, Fred A. Kish, JR., Vikrant Lal, Jacco Pleumeekers, Timothy Butrie, David G. Coult, John W. Osenbach, Jie Tang, Jiaming Zhang
-
Publication number: 20190280798Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise.Type: ApplicationFiled: November 13, 2018Publication date: September 12, 2019Inventors: Jeffrey T. Rahn, Fred A. Kish, Michael Reffle, Peter W. Evans, Vikrant Lal
-
Publication number: 20190158183Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.Type: ApplicationFiled: January 7, 2019Publication date: May 23, 2019Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Klsh, Donald J. Pavinski, Jie Tang, David Coult
-
Patent number: 10290619Abstract: Methods, systems, and apparatus, including a photonic integrated circuit package, including a photonic integrated circuit chip, including an active optical element; an electrode configured to receive an electrical signal; a ground electrode; and a bond contact electrically coupled to the electrode; and an ASIC chip including circuitry configured to provide the electrical signal; and a bond contact that is electrically coupled to the circuitry; an bridge chip bonded to at least a portion of the photonic integrated circuit chip and at least a portion of the ASIC chip.Type: GrantFiled: January 4, 2017Date of Patent: May 14, 2019Assignee: Infinera CorporationInventors: Peter W. Evans, John W. Osenbach, Fred A. Kish, Jr., Jiaming Zhang, Miguel Iglesias Olmedo, Maria Anagnosti
-
Patent number: 10261259Abstract: Consistent with the present disclosure, a coherent receiver PIC may be provided having waveguides that may be routed in a substantially U-shaped bend to feed both an incoming signal and a local oscillator signal into a 90-degree optical hybrid circuit, which may include a multi-mode interference (MMI) device. As a result, one or more local oscillator lasers may be provided between optical hybrid circuits in certain examples, and, in other examples, optical waveguides feeding optical signals to the optical hybrids are provided between the optical hybrid circuits. In both examples, a more compact receiver PIC layout may be achieved without waveguide crossings, that can be linearly scaled to accommodate reception of additional signals or channels without added complexity.Type: GrantFiled: January 4, 2017Date of Patent: April 16, 2019Assignee: Infinera CorporationInventor: Peter W. Evans
-
Publication number: 20190103937Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides.Type: ApplicationFiled: November 13, 2018Publication date: April 4, 2019Inventors: Jeffrey T. Rahn, Fred A. Kish, JR., Michael Reffle, Peter W. Evans, Vikrant Lal
-
Publication number: 20190103938Abstract: Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides.Type: ApplicationFiled: November 14, 2018Publication date: April 4, 2019Inventors: Jeffrey T. Rahn, Vikrant Lal, Peter W. Evans, Fred A. Kish, JR.