Patents by Inventor Peter W. Jacobs

Peter W. Jacobs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916509
    Abstract: The present invention relates generally to the photovoltaic generation of electrical energy. The present invention relates more particularly to photovoltaic arrays for use in photovoltaically generating electrical energy. Aspects of the present invention provide a variety of photovoltaic roofing elements and systems that include, for example, interlocking geometries to provide for water handling and integration with conventional roofing materials; and wire management features that can protect wiring and associated electrical components from physical and/or environmental damage.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: February 27, 2024
    Assignee: CERTAINTEED LLC
    Inventors: Robert D. Livsey, Joseph Charles Gombarick, Peter Chihlas, Husnu M. Kalkanoglu, Michael E. Blackburn, Stephen W. Steffes, Gregory F. Jacobs, Michael J. Noone
  • Publication number: 20200348250
    Abstract: Systems and methods for real-time monitoring of electrical discharge events across a tribological contact are provided. The systems comprise a signal generator, a test device comprising a tribological contact, a reference device and a signal comparator. The systems recognize changes between states where electrical discharge across a tribological contact does or does not occur and produce distinct output signals for each state and, further, may maintain a count of how often such events occur.
    Type: Application
    Filed: January 7, 2020
    Publication date: November 5, 2020
    Inventors: Gary L. Hunter, Jonathan Pita, Peter W. Jacobs
  • Patent number: 10000721
    Abstract: A method for improving wear control, while maintaining or improving fuel efficiency, in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and (i) at least one transition metal salt of a carboxylic acid (e.g., zinc stearate) or (ii) a mixture of at least one transition metal salt of a carboxylic acid (e.g., zinc stearate) and at least one detergent (i.e., an alkali metal or alkaline earth metal salt of an organic acid, or an alkali metal or alkaline earth metal salt of an inorganic acid, or an alkali metal or alkaline earth metal salt of a phenol, or mixtures thereof (e.g., calcium salicylate and/or magnesium sulfonate)), as a minor component. The lubricating oils are useful in internal combustion engines.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 19, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Alan M. Schilowitz, David J. Baillargeon, Tabassumul Haque, Peter W. Jacobs, Dalia Yablon, Man Kit Ng, Barbara A. Carfolite, Dana J. Gary, Andrew Konicek
  • Patent number: 9487729
    Abstract: Provided are lubricant compositions and hydrocarbon fluids including one or more lubricant base stocks and an effective amount of one more zero SAP antiwear additives and/or corrosion inhibitor additives, wherein the one more antiwear and/or corrosion inhibitor additives include one or more functionalized polyolefins having one or more pyridazine moieties. Such compositions exhibit improved anti-wear, friction reduction and anti-corrosion properties.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: November 8, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tabassumul Haque, Andy Haishung Tsou, Peter W. Jacobs, Rahul Ravindra Kulkarni, Donna Jean Crowther
  • Publication number: 20160186089
    Abstract: A method for improving wear control, while maintaining or improving fuel efficiency, in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and (i) at least one transition metal salt of a carboxylic acid (e.g., zinc stearate) or (ii) a mixture of at least one transition metal salt of a carboxylic acid (e.g., zinc stearate) and at least one detergent (i.e., an alkali metal or alkaline earth metal salt of an organic acid, or an alkali metal or alkaline earth metal salt of an inorganic acid, or an alkali metal or alkaline earth metal salt of a phenol, or mixtures thereof (e.g., calcium salicylate and/or magnesium sulfonate)), as a minor component. The lubricating oils are useful in internal combustion engines.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 30, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Alan M. Schilowitz, David J. Baillargeon, Tabassumul Haque, Peter W. Jacobs, Dalia Yablon, Man Kit Ng, Barbara A. Carfolite, Dana J. Gary, Andrew Konicek
  • Publication number: 20150027849
    Abstract: The present invention relates to methods and systems for removing polar molecule contaminants from a refinery stream in connection with the processing of hydrocarbon fluids, chemicals, whole crude oils, blends and fractions in refineries and chemical plants that include adding high surface energy and/or high surface area nanoparticle compounds to a refinery stream to remove the polar molecule contaminants.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 29, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Mohsen Shahmirzadi Yeganeh, Peter W. Jacobs, Ian Alfred Cody, Steven Webster Levine, Eric B. Sirota, Ramesh Gupta, Walter Weissman
  • Patent number: 8852427
    Abstract: The present invention relates to methods and systems for removing polar molecule contaminants from a refinery stream in connection with the processing of hydrocarbon fluids, chemicals, whole crude oils, blends and fractions in refineries and chemical plants that include adding high surface energy and/or high surface area nanoparticle compounds to a refinery stream to remove the polar molecule contaminants.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 7, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen S. Yeganeh, Peter W. Jacobs, Ian A. Cody, Steven W. Levine, Eric B. Sirota, Ramesh Gupta, Walter Weissman
  • Publication number: 20140113844
    Abstract: Provided are lubricant compositions and hydrocarbon fluids including one or more lubricant base stocks and an effective amount of one more zero SAP antiwear additives and/or corrosion inhibitor additives, wherein the one more antiwear and/or corrosion inhibitor additives include one or more functionalized polyolefins having one or more pyridazine moieties. Such compositions exhibit improved anti-wear, friction reduction and anti-corrosion properties.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 24, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Tabassumul Haque, Andy Haishung Tsou, Peter W. Jacobs, Rahul Ravindra Kulkarni, Donna Jean Crowther
  • Publication number: 20110139687
    Abstract: The present invention relates to methods and systems for removing polar molecule contaminants from a refinery stream in connection with the processing of hydrocarbon fluids, chemicals, whole crude oils, blends and fractions in refineries and chemical plants that include adding high surface energy and/or high surface area nanoparticle compounds to a refinery stream to remove the polar molecule contaminants.
    Type: Application
    Filed: September 30, 2010
    Publication date: June 16, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Mohsen S. YEGANEH, Peter W. JACOBS, Ian A. CODY, Steven W. LEVINE, Eric B. SIROTA, Ramesh GUPTA, Walter WEISSMAN
  • Publication number: 20100163461
    Abstract: A method and system for controlling fouling in a hydrocarbon refining process that includes measuring a level of a particulate in a process stream of the hydrocarbon refining process in communication with a hydrocarbon refinery component, identifying an effective amount of additive capable of reducing particulate-induced fouling based at least in part on the measured level of the particulate in the process stream, and introducing the effective amount of additive to the hydrocarbon refining process.
    Type: Application
    Filed: October 6, 2009
    Publication date: July 1, 2010
    Inventors: Chris A Wright, Glen B. Brons, Manuel S. Alvarez, Peter W. Jacobs, Sharon A. Feiller, George A. Lutz
  • Patent number: 7615509
    Abstract: Supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, and an organic additive, and methods for synthesizing supported metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic additive, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: November 10, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, EL-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Peter W. Jacobs, Jun Han, Daniel M. Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, Jr., David M. Lowe
  • Publication number: 20080146438
    Abstract: Supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, and an organic additive, and methods for synthesizing supported metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic additive, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: October 11, 2007
    Publication date: June 19, 2008
    Inventors: Chuangsheng Bai, EL-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Peter W. Jacobs, Jun Han, Daniel M. Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, David M. Lowe
  • Patent number: 7357856
    Abstract: A two stage process for selectively hydrodesulfurizing olefinic and sulfur and nitrogen-containing naphtha feedstreams wherein the first stage is a nitrogen removal stage to produce a naphtha feedstream having reduced levels of nitrogen compounds and a second stage wherein the naphtha feedstream having reduced levels of nitrogen compounds is hydrodesulfuried with a catalyst and under conditions selective to remove sulfur with minimum olefin saturation.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: April 15, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Peter W. Jacobs, Garland B. Brignac, Thomas R. Halbert, Madhav Acharya, Theresa A. Lelain
  • Publication number: 20080067109
    Abstract: The instant invention relates to a method for producing low-sulfur, low-nitrogen diesel boiling range products involving contacting a diesel boiling range feedstream with an acidic solution to selectively remove heterocyclic nitrogen-containing compounds before hydrotreating.
    Type: Application
    Filed: December 1, 2004
    Publication date: March 20, 2008
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Mark A. Greaney, Peter W. Jacobs, John N. Begasse, Jeffrey M. Dysard