Patents by Inventor Peter W. Richards

Peter W. Richards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150370396
    Abstract: A force sensing device for electronic device. The force inputs may be detected by measuring changes in capacitance, as measured by surface flex of a device having a flexible touchable surface, causing flex at a compressible gap within the device. A capacitive sensor responsive to changes in distance across the compressible gap. The sensor can be positioned above or below, or within, a display element, and above or below, or within, a backlight unit. The device can respond to bending, twisting, or other deformation, to adjust those zero force measurements. The device can use measure of surface flux that appear at positions on the surface not directly the subject of applied force, such as when the user presses on a part of the frame or a surface without capacitive sensors.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 24, 2015
    Inventors: Steven P. Hotelling, Martin P. Grunthaner, Peter W. Richards, Romain A. Teil, Charley T. Ogata, Michael E. Wittenberg
  • Publication number: 20150331517
    Abstract: Systems and methods related to piezoelectric based force sensing in touch devices are presented. One embodiment, for example, may take the form of an apparatus including a touch device having a deformable device stack and a piezoelectric element positioned relative to the deformable device stack such that the piezoelectric element deforms with the deformable stack. Deformation of the piezoelectric element generates a signal having a magnitude discernable as representative of an amount of force applied to the touch device.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 19, 2015
    Applicant: Apple Inc.
    Inventors: Sinan Filiz, Brian Q. Huppi, Kai Wang, Peter W. Richards, Vikram Garg
  • Publication number: 20150223708
    Abstract: One innovative aspect is directed to heartrate data collection. In some implementations, a circuit includes a light detector for generating a detected signal based on received light. The circuit includes a switching circuit configured to receive a first signal based on the detected signal and to switch among a first and a second configuration. In some implementations, the circuit includes a first and a second sampling circuit for sampling a value of the first signal when the switching circuit is in the first configuration and second configurations, respectively. In some implementations, the circuit includes an ambient light cancellation circuit for countering a first component of the first signal while the first switching circuit is in the first configuration. In some implementations, the circuit includes an adjustable gain circuit for adjusting a gain of the first signal while the first switching circuit is in the first configuration.
    Type: Application
    Filed: April 22, 2015
    Publication date: August 13, 2015
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Publication number: 20150173631
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Patent number: 9044149
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: June 2, 2015
    Assignee: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Patent number: 9042132
    Abstract: A noise suppression circuit for a power adapter is disclosed. The noise suppression circuit can reduce or eliminate adapter-induced noise that could interfere with an electronic device powered by the adapter. In one example, the noise suppression circuit can include an active circuit to detect and attenuate or cancel the induced noise. In another example, the noise suppression circuit can include an RLC circuit in parallel with the adapter choke to suppress the induced noise at the operating frequencies of the powered electronic device. In still another example, the noise suppression circuit can include a modified adapter Y capacitor connection so as to bypass the adapter choke, thereby reducing or eliminating the choke's induced noise.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: May 26, 2015
    Assignee: Apple Inc.
    Inventors: Peter W. Richards, Steven Porter Hotelling
  • Patent number: 9014790
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Grant
    Filed: May 31, 2014
    Date of Patent: April 21, 2015
    Assignee: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Publication number: 20140358012
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Application
    Filed: May 31, 2014
    Publication date: December 4, 2014
    Applicant: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Publication number: 20140288435
    Abstract: One innovative aspect is directed to heart rate data collection. In some implementations, a circuit includes a light detector for generating a first electrical signal based on received light. The circuit includes a switching circuit, having a first and a second configuration, configured to receive a first voltage signal based on the first electrical signal and to switch among the first and the second configurations. The circuit includes first and second sampling circuits for sampling a value of the first voltage signal when the switching circuit is in the first configuration and second configurations, respectively. The circuit includes an ambient light cancellation circuit for generating a current signal to counter a first component of the first electrical signal when the first switching circuit is in the first configuration.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 25, 2014
    Applicant: Fitbit, Inc.
    Inventors: Peter W. Richards, Thomas Samuel Elliot, Shelten Gee Jao Yuen
  • Patent number: 8797282
    Abstract: A touch sensor pattern with a secondary sensor formed substantially as part of the touch sensor pattern is provided. By forming the secondary sensor substantially as part of the touch sensor pattern, where the secondary sensor can be held at a steady state or ground during a touch scan cycle of the touch sensor, an overall thickness of the stackup at the area of the touch sensor where the secondary sensor is formed can be significantly reduced. The reduction in the thickness can allow more space for other hardware such as a device battery, for example. Moreover, grounding the secondary sensor can shield the touch sensor pattern at the area of the touch sensor pattern where the secondary sensor is formed, during a touch scan cycle.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 5, 2014
    Assignee: Apple Inc.
    Inventors: Benjamin B. Lyon, Peter W. Richards
  • Publication number: 20140092052
    Abstract: Detecting force and touch using FTIR and capacitive location. FTIR determines applied force by the user's finger within infrared transmit lines on a touch device. A pattern of such lines determine optical coupling with the touch device. Capacitive sensing can determine (A) where the finger actually touches, so the touch device more accurately infers applied force; (B) whether finger touches shadow each other; (C) as a baseline for applied force; or (D) whether attenuated reflection is due to a current optical coupling, or is due to an earlier optical coupling, such as a smudge on the cover glass. If there is attenuated reflection without actual touching, the touch device can reset a baseline for applied force for the area in which that smudge remains. Infrared transmitters and receivers are positioned where they are not visible to a user, such as below a frame or mask for the cover glass.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: Apple Inc.
    Inventors: Martin P. Grunthaner, Peter W. Richards, Romain A. Teil, Steven P. Hotelling
  • Publication number: 20130265242
    Abstract: A touch sensor panel configured to minimize the effect on touch or proximity event detection caused by a common mode noise event. The touch sensor panel includes circuitry that works to minimize the amount of time that the touch sensor panel is unable to accurately sense touch and proximity events due to a common mode noise event. The touch sensor panel can also re-acquire data that was collected during the time that the sensor panel was unable to accurately detect touch and proximity events, when a common mode noise event is detected.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 10, 2013
    Inventors: Peter W. Richards, Christoph Horst Krah, Martin Paul Grunthaner
  • Publication number: 20130099854
    Abstract: A noise suppression circuit for a power adapter is disclosed. The noise suppression circuit can reduce or eliminate adapter-induced noise that could interfere with an electronic device powered by the adapter. In one example, the noise suppression circuit can include an active circuit to detect and attenuate or cancel the induced noise. In another example, the noise suppression circuit can include an RLC circuit in parallel with the adapter choke to suppress the induced noise at the operating frequencies of the powered electronic device. In still another example, the noise suppression circuit can include a modified adapter Y capacitor connection so as to bypass the adapter choke, thereby reducing or eliminating the choke's induced noise.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Inventors: Peter W. RICHARDS, Steven Porter Hotelling
  • Publication number: 20120092270
    Abstract: A touch sensor pattern with a secondary sensor formed substantially as part of the touch sensor pattern is provided. By forming the secondary sensor substantially as part of the touch sensor pattern, where the secondary sensor can be held at a steady state or ground during a touch scan cycle of the touch sensor, an overall thickness of the stackup at the area of the touch sensor where the secondary sensor is formed can be significantly reduced. The reduction in the thickness can allow more space for other hardware such as a device battery, for example. Moreover, grounding the secondary sensor can shield the touch sensor pattern at the area of the touch sensor pattern where the secondary sensor is formed, during a touch scan cycle.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 19, 2012
    Inventors: Benjamin B. LYON, Peter W. Richards
  • Publication number: 20120092285
    Abstract: Touch pad structures are provided that gather touch sensor data. The data may be used to control a computer or other electronic device. The touch pad structures may be integrated into a computer or other computing equipment or may be provided as a stand-alone accessory. The touch pad structures may include a touch sensor array. The touch sensor array may include rows and columns of touch sensor electrodes, interconnect lines, and other conductive structures. The conductive structures on the touch sensor array may be formed from patterned layers of ink. Interconnect line segments in different layer of ink may be connected in rectangular contact regions. The touch sensor array may have a tail. A layer of insulator may be removed from the substrate across a tip portion of the tail to allow the line segments to be connected.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 19, 2012
    Inventors: Jay Kevin Osborn, Peter W. Richards
  • Patent number: 7999833
    Abstract: The present invention provides a method and apparatus of converting a stream of pixel data in space and time into a stream of bitplane data. In particular, the present invention converts the pixel data stream according to a predetermined output format. The apparatus of the present invention receives the pixel data in a “real-time” fashion, and dynamically performs predefined permutations so as to accomplish the predefined transpose operation. Alternatively, the pixel data are stored in a storage medium, and the apparatus of the present invention retrieves the pixel data and performs the predefined permutation to accomplish the predefined transpose operation. The methods and apparatus disclosed herein are especially useful for processing a high-speed stream of digital data in a flow-through manner and suitable for implementation in a hardware video pipeline.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 16, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Peter W. Richards
  • Patent number: 7315294
    Abstract: The present invention provides a method and apparatus of converting a stream of pixel data in space and time into a stream of bitplane data. In particular, the present invention converts the pixel data stream according to a predetermined output format. The apparatus of the present invention receives the pixel data in a “real-time” fashion, and dynamically performs predefined permutations so as to accomplish the predefined transpose operation. Alternatively, the pixel data are stored in a storage medium, and the apparatus of the present invention retrieves the pixel data and performs the predefined permutation to accomplish the predefined transpose operation. The methods and apparatus disclosed herein are especially useful for processing a high-speed stream of digital data in a flow-through manner and suitable for implementation in a hardware video pipeline.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: January 1, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Peter W. Richards
  • Patent number: 7307775
    Abstract: A projection system, a spatial light modulator, and a method for forming a MEMS device is disclosed. The spatial light modulator can have two substrates bonded together with one of the substrates comprising a micromirror array. The two substrates can be bonded at the wafer level after depositing a getter material andlor solid or liquid lubricant on one or both of the wafers. The wafers can be bonded together hermetically if desired, and the pressure between the two substrates can be below atmosphere.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: December 11, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Satayadev R. Patel, Andrew G. Huibers, Steve Chiang, Robert M. Duboc, Thomas J. Grobelny, Hung Nan Chen, Dietrich Dehlinger, Peter W. Richards, Hongqin Shi, Anthony Sun
  • Publication number: 20070258312
    Abstract: Methods and apparatus for selectively updating memory cells of a memory cell array are provided. The memory cells of each row of the memory cell array are provided with a plurality of wordlines. Memory cells of the row are activated and updated by separated wordlines. In an application of display systems using memory cell arrays for controlling the pixels of the display system and pulse-width-modulation (PWM) technique for displaying grayscales, the pixels can be modulated by different PWM waveforms. The perceived dynamic-false-contouring artifacts are reduced thereby. In another application, the provision of multiple wordlines enables precise measurements of voltages maintained by memory cells of the memory cell array.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 8, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Peter W. Richards
  • Patent number: 7221498
    Abstract: Methods and apparatus for selectively updating memory cells of a memory cell array are provided. The memory cells of each row of the memory cell array are provided with a plurality of wordlines. Memory cells of the row are activated and updated by separated wordlines. In an application of display systems using memory cell arrays for controlling the pixels of the display system and pulse-width-modulation (PWM) technique for displaying grayscales, the pixels can be modulated by different PWM waveforms. The perceived dynamic-false-contouring artifacts are reduced thereby. In another application, the provision of multiple wordlines enables precise measurements of voltages maintained by memory cells of the memory cell array.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 22, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Peter W. Richards, Andrew Huibers