Patents by Inventor Peter Wilding

Peter Wilding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9477740
    Abstract: A system, method and processor medium that manages automatic generation of output from an on-line analytical processing (OLAP) system. Scheduled services are processed in an OLAP system and output from the OLAP system is then automatically forwarded to one or more subscriber output devices specified for that service. The system manages the operation of the service processing system to increase throughput, increase speed, and improve administrator control over the processing. The system enables administrator control over processing by enabling administrators to view all services and all subscribers of the system, by maintaining an address book containing entries for subscribers of the service, and by scheduling processing of services. The system governs the volume of services being processed, the number of subscribers to a particular service, and the number of output devices to which a service may be broadcast.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 25, 2016
    Assignee: MICROSTRATEGY, INCORPORATED
    Inventors: Kyle Yost, Michael Saylor, Peter Wilding, Robert Trenkamp
  • Patent number: 8321411
    Abstract: A system, method and processor medium that manages automatic generation of output from an on-line analytical processing (OLAP) system. Scheduled services are processed in an OLAP system and output from the OLAP system is then automatically forwarded to one or more subscriber output devices specified for that service. The system manages the operation of the service processing system to increase throughput, increase speed, and improve the administrator control over the processing. The system enables administrator control over processing by enabling administrators to view all services and all subscribers of the system, by maintaining an address book containing entries for subscribers of the service and by scheduling processing of services. The system governs the volume of services being processed, the number of subscribers to a particular service, and the number of output devices to which a service may be broadcast.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: November 27, 2012
    Assignee: MicroStrategy, Incorporated
    Inventors: Kyle Yost, Michael Saylor, Peter Wilding, Robert Trenkamp
  • Patent number: 7892819
    Abstract: Disclosed are devices for amplifying a preselected polynucleotide in a sample by conducting a polynucleotide amplification reaction. The devices are provided with a substrate microfabricated to include a polynucleotide amplification reaction, chamber, having at least one cross-sectional dimension of about 0.1 to 1000 ?m. The device also includes at least one port in fluid communication with the reaction chamber, for introducing a sample to the chamber, for venting the chamber when necessary, and, optionally, for removing products or waste material from the device. The reaction chamber may be provided with reagents required for amplification of a preselected polynucleotide. The device also may include means for thermally regulating the contents of the reaction chamber, to amplify a preselected polynucleotide. Preferably, the reaction chamber is fabricated with a high surface to volume ratio, to facilitate thermal regulation.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: February 22, 2011
    Assignee: Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka
  • Publication number: 20110020876
    Abstract: Disclosed are devices for amplifying a preselected polynucleotide in a sample by conducting a polynucleotide amplification reaction. The devices are provided with a substrate microfabricated to include a polynucleotide amplification reaction, chamber, having at least one cross-sectional dimension of about 0.1 to 1000 ?m. The device also includes at least one port in fluid communication with the reaction chamber, for introducing a sample to the chamber, for venting the chamber when necessary, and, optionally, for removing products or waste material from the device. The reaction chamber may be provided with reagents required for amplification of a preselected polynucleotide. The device also may include means for thermally regulating the contents of the reaction chamber, to amplify a preselected polynucleotide. Preferably, the reaction chamber is fabricated with a high surface to volume ratio, to facilitate thermal regulation.
    Type: Application
    Filed: August 11, 2003
    Publication date: January 27, 2011
    Inventors: Peter Wilding, Larry J. Kricka
  • Patent number: 7771985
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: August 10, 2010
    Assignee: Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka, Jay N. Zemel
  • Patent number: 7494770
    Abstract: Disclosed are devices for amplifying a preselected polynucleotide in a sample by conducting a polynucleotide polymerization reaction. The devices comprise a substrate microfabricated to define a sample inlet port and a mesoscale flow system, which extends from the inlet port. The mesoscale flow system includes a polynucleotide polymerization reaction chamber in fluid communication with the inlet port which is provided with reagents required for polymerization and amplification of a preselected polynucleotide. In one embodiment the devices may be utilized to implement a polymerase chain reaction (PCR) in the reaction chamber (PCR chamber).
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: February 24, 2009
    Assignee: Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka
  • Publication number: 20070190641
    Abstract: Disclosed are devices for amplifying a preselected polynucleotide in a sample by conducting a polynucleotide polymerization reaction. The devices comprise a substrate microfabricated to define a sample inlet port and a mesoscale flow system, which extends from the inlet port. The mesoscale flow system includes a polynucleotide polymerization reaction chamber in fluid communication with the inlet port which is provided with reagents required for polymerization and amplification of a preselected polynucleotide. In one embodiment the devices may be utilized to implement a polymerase chain reaction (PCR) in the reaction chamber (PCR chamber).
    Type: Application
    Filed: April 5, 2007
    Publication date: August 16, 2007
    Inventors: Peter Wilding, Larry Kricka
  • Publication number: 20070172389
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Application
    Filed: April 4, 2007
    Publication date: July 26, 2007
    Inventors: Peter Wilding, Larry Kricka, Jay Zemel
  • Publication number: 20060223166
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Application
    Filed: December 15, 2005
    Publication date: October 5, 2006
    Inventors: Peter Wilding, Larry Kricka, Jay Zemel
  • Patent number: 7018830
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: March 28, 2006
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka, Jay N. Zemel
  • Patent number: 7005292
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: February 28, 2006
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka, Jay N. Zemel
  • Publication number: 20060040309
    Abstract: Disclosed are devices for amplifying a preselected polynucleotide in a sample by conducting a polynucleotide polymerization reaction. The devices comprise a substrate microfabricated to define a sample inlet port and a mesoscale flow system, which extends from the inlet port. The mesoscale flow system includes a polynucleotide polymerization reaction chamber in fluid communication with the inlet port which is provided with reagents required for polymerization and amplification of a preselected polynucleotide. In one embodiment the devices may be utilized to implement a polymerase chain reaction (PCR) in the reaction chamber (PCR chamber).
    Type: Application
    Filed: October 11, 2005
    Publication date: February 23, 2006
    Inventors: Peter Wilding, Larry Kricka
  • Patent number: 6953676
    Abstract: Disclosed are devices for amplifying a preselected polynucleotide in a sample by conducting a polynucleotide polymerization reaction. The devices comprise a substrate microfabricated to define a sample inlet port and a mesoscale flow system, which extends from the inlet port. The mesoscale flow system includes a polynucleotide polymerization reaction chamber in fluid communication with the inlet port which is provided with reagents required for polymerization and amplification of a preselected polynucleotide. In one embodiment the devices may be utilized to implement a polymerase chain reaction (PCR) in the reaction chamber (PCR chamber).
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: October 11, 2005
    Assignee: Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka
  • Publication number: 20050079634
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 14, 2005
    Inventors: Peter Wilding, Larry Kricka, Jay Zemel
  • Patent number: 6660517
    Abstract: Disclosed are devices for amplifying a preselected polynucleotide in a sample by conducting a polynucleotide amplification reaction. The devices are provided with a substrate microfabricated to include a polynucleotide amplification reaction chamber, having at least one cross-sectional dimension of about 0.1 to 1000 &mgr;m. The device also includes at least one port in fluid communication with the reaction chamber, for introducing a sample to the chamber, for venting the chamber when necessary, and, optionally, for removing products or waste material from the device. The reaction chamber may be provided with reagents required for amplification of a preselected polynucleotide. The device also may include means for thermally regulating the contents of the reaction chamber, to amplify a preselected polynucleotide. Preferably, the reaction chamber is fabricated with a high surface to volume ratio, to facilitate thermal regulation.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: December 9, 2003
    Assignee: Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka
  • Publication number: 20030199081
    Abstract: Disclosed are devices for amplifying a preselected polynucleotide in a sample by conducting a polynucleotide polymerization reaction. The devices comprise a substrate microfabricated to define a sample inlet port and a mesoscale flow system, which extends from the inlet port. The mesoscale flow system includes a polynucleotide polymerization reaction chamber in fluid communication with the inlet port which is provided with reagents required for polymerization and amplification of a preselected polynucleotide. In one embodiment the devices may be utilized to implement a polymerase chain reaction (PCR) in the reaction chamber (PCR chamber).
    Type: Application
    Filed: April 30, 2003
    Publication date: October 23, 2003
    Inventors: Peter Wilding, Larry J. Kricka
  • Publication number: 20030129671
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 10, 2003
    Inventors: Peter Wilding, Larry J. Kricka, Jay N. Zemel
  • Patent number: 6551841
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: April 22, 2003
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka, Jay N. Zemel
  • Patent number: 6184029
    Abstract: A mesoscale sample preparation device capable of providing microvolume test samples, separated into a cell-enriched fraction and a fraction of reduced cell content, for performing various analyses, such as binding assays, determinations involving polynucleotide amplification and the like. Analytical systems including such devices are also disclosed.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: February 6, 2001
    Assignee: Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka
  • Patent number: 6162789
    Abstract: A process for the recovery of AFPs from natural sources, said process involving the steps ofa) isolating an AFP containing juice from the natural source;b) heat treating the natural source or the AFP containing juice to a temperature of at least 60.degree. C.;c) removing the insoluble fraction.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: December 19, 2000
    Assignee: Good Humor-Breyers Ice Cream, division of Conopco, Inc.
    Inventors: Peter John Lillford, Andrew John McArthur, Christopher Michael Sidebottom, Peter Wilding