Patents by Inventor Peter Z. Anast
Peter Z. Anast has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10625844Abstract: A fuselage portion of a vehicle (e.g., an aircraft) is disclosed. The fuselage portion comprises a frame; a floor beam attached to the frame and comprising ends; a structural stanchion comprising a first end and a second end; a first structural coupling joining the first end of the structural stanchion and the floor beam; a second structural coupling joining the second end of the structural stanchion and the frame; a non-structural stanchion comprising a third end and a fourth end; a first non-structural coupling joining the third end of the non-structural stanchion and the floor beam; and a second non-structural coupling joining the fourth end of the non-structural stanchion and the frame.Type: GrantFiled: November 10, 2014Date of Patent: April 21, 2020Assignee: THE BOEING COMPANYInventor: Peter Z. Anast
-
Patent number: 10364047Abstract: In one aspect of the disclosure, an apparatus for manipulating a plurality of curved sheets is provided. Each of the plurality of curved sheets includes an upper surface and a lower surface. The apparatus includes tooling to be coupled to the upper surface of each of the plurality of curved sheets. The tooling is capable of moving the plurality of curved sheets relative to each other and abutting the plurality of curved sheets so that the upper surface of each of the plurality of curved sheets is coextensive with a virtual arcuate surface. The apparatus also includes a welding apparatus capable of welding the plurality of curved sheets together after abutting the plurality of curved sheets.Type: GrantFiled: March 17, 2017Date of Patent: July 30, 2019Assignee: THE BOEING COMPANYInventor: Peter Z. Anast
-
Publication number: 20170190445Abstract: In one aspect of the disclosure, an apparatus for manipulating a plurality of curved sheets is provided. Each of the plurality of curved sheets includes an upper surface and a lower surface. The apparatus includes tooling to be coupled to the upper surface of each of the plurality of curved sheets. The tooling is capable of moving the plurality of curved sheets relative to each other and abutting the plurality of curved sheets so that the upper surface of each of the plurality of curved sheets is coextensive with a virtual arcuate surface. The apparatus also includes a welding apparatus capable of welding the plurality of curved sheets together after abutting the plurality of curved sheets.Type: ApplicationFiled: March 17, 2017Publication date: July 6, 2017Inventor: Peter Z. ANAST
-
Patent number: 9604319Abstract: In one aspect of the disclosure, an apparatus for manipulating a plurality of curved sheets is provided. Each of the plurality of curved sheets includes an upper surface and a lower surface. The apparatus includes tooling to be coupled to the upper surface of each of the plurality of curved sheets. The tooling is capable of moving the plurality of curved sheets relative to each other and abutting the plurality of curved sheets so that the upper surface of each of the plurality of curved sheets is coextensive with a virtual arcuate surface. The apparatus also includes a welding apparatus capable of welding the plurality of curved sheets together after abutting the plurality of curved sheets.Type: GrantFiled: August 13, 2013Date of Patent: March 28, 2017Assignee: THE BOEING COMPANYInventor: Peter Z. Anast
-
Publication number: 20160129986Abstract: A fuselage portion of a vehicle (e.g., an aircraft) is disclosed. The fuselage portion comprises a frame; a floor beam attached to the frame and comprising ends; a structural stanchion comprising a first end and a second end; a first structural coupling joining the first end of the structural stanchion and the floor beam; a second structural coupling joining the second end of the structural stanchion and the frame; a non-structural stanchion comprising a third end and a fourth end; a first non-structural coupling joining the third end of the non-structural stanchion and the floor beam; and a second non-structural coupling joining the fourth end of the non-structural stanchion and the frame.Type: ApplicationFiled: November 10, 2014Publication date: May 12, 2016Inventor: Peter Z. Anast
-
Publication number: 20150050516Abstract: In one aspect of the disclosure, an apparatus for manipulating a plurality of curved sheets is provided. Each of the plurality of curved sheets includes an upper surface and a lower surface. The apparatus includes tooling to be coupled to the upper surface of each of the plurality of curved sheets. The tooling is capable of moving the plurality of curved sheets relative to each other and abutting the plurality of curved sheets so that the upper surface of each of the plurality of curved sheets is coextensive with a virtual arcuate surface. The apparatus also includes a welding apparatus capable of welding the plurality of curved sheets together after abutting the plurality of curved sheets.Type: ApplicationFiled: August 13, 2013Publication date: February 19, 2015Applicant: The Boeing CompanyInventor: Peter Z. Anast
-
Patent number: 8209939Abstract: A system for supporting a load across non-intersecting beams each having a web depending from an upper chord with an upper surface generally parallel with a chordal plane includes at least one crossing member intersecting the beams at intersection loci. At each intersection locus the beam presents a channel receiving a crossing member in a nesting orientation in an installed orientation. The crossing member includes a support expanse configured for an abutting relation with the upper chord to present the upper surface and a top surface of the crossing member as coplanar in the installed orientation. The beam and the crossing member have aperture-pairs in register in the installed orientation. The apertures accommodate tension resisting members or compression resisting members coupled with the upper chord and traversing the crossing member for resisting tension or compression forces on the upper chord in the installed orientation.Type: GrantFiled: August 11, 2010Date of Patent: July 3, 2012Assignee: The Boeing CompanyInventors: Peter Z. Anast, Rickie Hansken
-
Publication number: 20120036809Abstract: A system for supporting a load across non-intersecting beams each having a web depending from an upper chord with an upper surface generally parallel with a chordal plane includes at least one crossing member intersecting the beams at intersection loci. At each intersection locus the beam presents a channel receiving a crossing member in a nesting orientation in an installed orientation. The crossing member includes a support expanse configured for an abutting relation with the upper chord to present the upper surface and a top surface of the crossing member as coplanar in the installed orientation. The beam and the crossing member have aperture-pairs in register in the installed orientation. The apertures accommodate tension resisting members or compression resisting members coupled with the upper chord and traversing the crossing member for resisting tension or compression forces on the upper chord in the installed orientation.Type: ApplicationFiled: August 11, 2010Publication date: February 16, 2012Applicant: BOEING COMPANYInventors: Peter Z. Anast, Rickie Hansken
-
Patent number: 8038099Abstract: A bonded metal fuselage for aerospace vehicles includes a monocoque structure having an outer metal skin, metal tear straps bonded to the outer skin and metal stringers bonded to the outer skin and to the tear straps. The outer chords of fuselage frames are fastened directly to tear straps and to the skin, obviating the need for clips to fasten the frames to the stringers.Type: GrantFiled: April 30, 2008Date of Patent: October 18, 2011Assignee: The Boeing CompanyInventors: Peter Z. Anast, Perry T. Horst
-
Publication number: 20090272846Abstract: A bonded metal fuselage for aerospace vehicles includes a monocoque structure having an outer metal skin, metal tear straps bonded to the outer skin and metal stringers bonded to the outer skin and to the tear straps. The outer chords of fuselage frames are fastened directly to tear straps and to the skin, obviating the need for clips to fasten the frames to the stringers.Type: ApplicationFiled: April 30, 2008Publication date: November 5, 2009Inventors: Peter Z. Anast, Perry T. Horst
-
Patent number: 6648273Abstract: A fuselage comprising a skin assembly including an outer, laminate skin bonded to an inner, aluminum doubler. The fuselage also includes a support structure comprising a plurality of longitudinal stringer members and a plurality of annular frame members that are attached to, and cooperate to support, the skin assembly. The aluminum doubler provides additional structural support for the fuselage, and in particular, for the outer laminate skin of the skin assembly. The additional structural strength added by the aluminum doubler allows the use of an improved range of fasteners, such as knife-edge, countersink rivets and further allows the use of the laminate layer even in areas with a large number of cutouts, such as the window track of the fuselage. The members of the support structure may interconnected via a plurality of integral flanges, which, when combined with the skin, provide improved structural strength for the entire fuselage.Type: GrantFiled: October 30, 2001Date of Patent: November 18, 2003Assignee: The Boeing CompanyInventor: Peter Z. Anast
-
Publication number: 20030080251Abstract: A fuselage comprising a skin assembly including an outer, laminate skin bonded to an inner, aluminum doubler. The fuselage also includes a support structure comprising a plurality of longitudinal stringer members and a plurality of annular frame members that are attached to, and cooperate to support, the skin assembly. The aluminum doubler provides additional structural support for the fuselage, and in particular, for the outer laminate skin of the skin assembly. The additional structural strength added by the aluminum doubler allows the use of an improved range of fasteners, such as knife-edge, countersink rivets and further allows the use of the laminate layer even in areas with a large number of cutouts, such as the window track of the fuselage. The members of the support structure may interconnected via a plurality of integral flanges, which, when combined with the skin, provide improved structural strength for the entire fuselage.Type: ApplicationFiled: October 30, 2001Publication date: May 1, 2003Applicant: The Boeing CompanyInventor: Peter Z. Anast
-
Patent number: 6554225Abstract: An aircraft deck support system includes horizontal deck support beams connected to the aircraft's frames. Each deck support beam has a plurality of machined, generally T-shaped supports. Each T-shaped support includes either a horizontal recess or a raised surface formed in a deck support beam upper chord and a U-shaped aperture formed in a beam web. The T-shaped support matably receives a cross-support beam attachment flange perpendicularly aligned with the deck support beams. Each cross-support beam includes a web perpendicularly connected at an upper end to the attachment flange, and a stiffening flange at a web lower end. Both the web and the stiffening flange are freely suspended within the U-shaped aperture of the T-shaped support. When joined, the cross-support beam seats on the T-shaped support allowing both the cross-support beam and the deck support beam to develop maximum bending moments at a reduced structural weight.Type: GrantFiled: June 14, 2002Date of Patent: April 29, 2003Assignee: The Boeing CompanyInventors: Peter Z. Anast, Rickie Hansken
-
Patent number: 6293497Abstract: Slotted cruise airfoil technology allows production of a substantially unswept wing that achieves the same cruise speed as today's conventional jet airplanes with higher sweep. This technology allows the wing boundary layer to negotiate a strong recovery gradient closer to the wing trailing edge. The result is about a cruise speed of Mach=0.78, but with a straight wing. It also means that for the same lift, the super velocities over the top of the wing can be lower. With very low sweep and this type of cruise pressure distribution, natural laminar flow will be obtained. In addition, heat is transferred from the leading edge of the wing and of the main flap to increase the extent of the natural laminar flow. The slotted cruise wing airfoil allows modularization of the wing and the body for a family of airplanes. The unsweeping of the wing significantly changes the manufacturing processes, reduces manufacturing costs and flow time from detail part fabrication to airplane delivery.Type: GrantFiled: April 5, 1999Date of Patent: September 25, 2001Assignee: The Boeing CompanyInventors: Robert H. Kelley-Wickemeyer, Gerhard E. Seidel, Peter Z. Anast, James Douglas McLean
-
Patent number: RE44313Abstract: Slotted cruise airfoil technology allows production of a substantially unswept wing that achieves the same cruise speed as today's conventional jet airplanes with higher sweep. This technology allows the wing boundary layer to negotiate a strong recovery gradient closer to the wing trailing edge. The result is about a cruise speed of Mach=0.78, but with a straight wing. It also means that for the same lift, the super velocities over the top of the wing can be lower. With very low sweep and this type of cruise pressure distribution, natural laminar flow will be obtained. In addition, heat is transferred from the leading edge of the wing and of the main flap to increase the extent of the natural laminar flow. The slotted cruise wing airfoil allows modularization of the wing and the body for a family of airplanes. The unsweeping of the wing significantly changes the manufacturing processes, reduces manufacturing costs and flow time from detail part fabrication to airplane delivery.Type: GrantFiled: October 22, 1997Date of Patent: June 25, 2013Assignee: The Boeing CompanyInventors: Robert H. Kelley-Wickemeyer, Peter Z. Anast, James Douglas McLean, Hilda Seidel