Patents by Inventor Peter Z. Rashev

Peter Z. Rashev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10261939
    Abstract: In accordance with at least one embodiment, a processor system is disclosed having a SIMD processor device that has a plurality of subsidiary processing elements that are controlled to process multiple data concurrently. In accordance with at least one embodiment, the SIMD processor is a vector processor (VPU) having a plurality of vector Arithmetic Units (AUs) as subsidiary processing elements, and the VPU executes an instruction to transfer table information from a global memory of the VPU to a plurality of local memories accessible by each AU. The VPU also executes an instruction that results in each processing element performing a table lookup from a table stored at its local memory. In response to the instruction, this table lookup uses a portion of a lookup value to access information from the table, and uses another portion of the lookup information to calculate an interpolated resultant based upon the accessed information.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: April 16, 2019
    Assignee: NXP USA, Inc.
    Inventors: Leo G. Dehner, Jayakrishnan C. Mundarath, Peter Z. Rashev
  • Patent number: 9893714
    Abstract: A FIR filter includes segment cells, each of which is configurable as an interpolation filter, a decimation filter, a symmetric filter, or an asymmetric filter. Two or more of the segment cells are configurable to be cascaded to form an interpolation filter, a decimation filter, a symmetric filter, an asymmetric filter, a complex symmetric filter, or a complex asymmetric filter. The FIR filter includes registers corresponding to the segment cells for storing coefficient values of the corresponding segment cells. The FIR filter further includes control circuits corresponding to the segment cells for generating control signals.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: February 13, 2018
    Assignee: NXP USA, INC.
    Inventors: Akshat Mittal, Arvind Kaushik, Peter Z. Rashev, Amrit P. Singh
  • Patent number: 9665510
    Abstract: A system for storing pre-distorted output samples in a memory includes a sample counter, a programming interface module, and a comparator. The sample counter counts the pre-distorted output samples, generates a dynamic count value, receives a capture counter status signal, and generates a first count value. The programming interface module receives and outputs the first count value, an offset value, and a capture control signal, and generates a first interrupt signal. The comparator receives the first count value, the offset value, the dynamic count value, and the capture control signal, generates a final value, compares the final value with the dynamic count value, and generates a trigger signal when the final value equals the dynamic count value based on the capture control signal. The trigger signal initiates the storing of the pre-distorted output samples in the memory.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: May 30, 2017
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Arvind Kaushik, Peter Z. Rashev, Amrit P. Singh, Akshat Mittal
  • Publication number: 20170063346
    Abstract: A FIR filter includes segment cells, each of which is configurable as an interpolation filter, a decimation filter, a symmetric filter, or an asymmetric filter. Two or more of the segment cells are configurable to be cascaded to form an interpolation filter, a decimation filter, a symmetric filter, an asymmetric filter, a complex symmetric filter, or a complex asymmetric filter. The FIR filter includes registers corresponding to the segment cells for storing coefficient values of the corresponding segment cells. The FIR filter further includes control circuits corresponding to the segment cells for generating control signals.
    Type: Application
    Filed: September 1, 2015
    Publication date: March 2, 2017
    Inventors: Akshat Mittal, ARVIND KAUSHIK, PETER Z. RASHEV, AMRIT P. SINGH
  • Publication number: 20160179715
    Abstract: A system for storing pre-distorted output samples in a memory includes a sample counter, a programming interface module, and a comparator. The sample counter counts the pre-distorted output samples, generates a dynamic count value, receives a capture counter status signal, and generates a first count value. The programming interface module receives and outputs the first count value, an offset value, and a capture control signal, and generates a first interrupt signal. The comparator receives the first count value, the offset value, the dynamic count value, and the capture control signal, generates a final value, compares the final value with the dynamic count value, and generates a trigger signal when the final value equals the dynamic count value based on the capture control signal. The trigger signal initiates the storing of the pre-distorted output samples in the memory.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 23, 2016
    Inventors: Arvind Kaushik, Peter Z. Rashev, Amrit P. Singh, Akshat Mittal
  • Publication number: 20160054995
    Abstract: In accordance with at least one embodiment, a processor system is disclosed having a SIMD processor device that has a plurality of subsidiary processing elements that are controlled to process multiple data concurrently. In accordance with at least one embodiment, the SIMD processor is a vector processor (VPU) having a plurality of vector Arithmetic Units (AUs) as subsidiary processing elements, and the VPU executes an instruction to transfer table information from a global memory of the VPU to a plurality of local memories accessible by each AU. The VPU also executes an instruction that results in each processing element performing a table lookup from a table stored at its local memory. In response to the instruction, this table lookup uses a portion of a lookup value to access information from the table, and uses another portion of the lookup information to calculate an interpolated resultant based upon the accessed information.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 25, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Leo G. Dehner, Jayakrishnan C. Mundarath, Peter Z. Rashev
  • Patent number: 9252821
    Abstract: A method and apparatus are used to predistort input signal samples according to Volterra Series Approximation Model using one or more digital predistortion blocks (300) having a plurality of predistorter cells (301-303), each including an input multiplication stage (366-367) for combining absolute sample values received from an absolute sample delay line (362) into a first stage output, a lookup table (368) connected to be addressed by the first stage output for generating an LUT output, and a plurality of output multiplication stages (371-372, 373-374) for combining the LUT output with samples received from the amplitude sample delay line (362) and signal sample delay line (363) to generate an output signal sample yQ from said predistorter cell, where the output signal samples yQ from the predistorter cells are combined at an output adder circuit (375) to generate one or more Volterra terms of a combined signal (yOUT[n]).
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: February 2, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Roi M. Shor, Avraham D. Gal, Peter Z. Rashev
  • Patent number: 9231530
    Abstract: A system for calibrating a power amplifier (PA) includes a memory, a processor, a digital pre-distorter (DPD), and a data converter. The DPD includes a programming interface module, a pattern generator, a multiplier, and a pre-distorter module. The multiplier multiplies reference baseband stream data from the memory with pattern coefficient data generated by the pattern generator to generate shaped reference baseband stream data. The pre-distorter module generates pre-distorted shaped reference baseband stream data. The PA receives a low-power reference radio frequency (RF) signal corresponding to the pre-distorted shaped reference baseband stream data and generates a high-power reference RF signal.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: January 5, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Arvind Kaushik, Peter Z. Rashev, Amrit P. Singh, Akshat Mittal
  • Publication number: 20150381216
    Abstract: A method and apparatus are used to predistort input signal samples according to Volterra Series Approximation Model using one or more digital predistortion blocks (300) having a plurality of predistorter cells (301-303), each including an input multiplication stage (366-367) for combining absolute sample values received from an absolute sample delay line (362) into a first stage output, a lookup table (368) connected to be addressed by the first stage output for generating an LUT output, and a plurality of output multiplication stages (371-372, 373-374) for combining the LUT output with samples received from the amplitude sample delay line (362) and signal sample delay line (363) to generate an output signal sample yQ from said predistorter cell, where the output signal samples yQ from the predistorter cells are combined at an output adder circuit (375) to generate one or more Volterra terms of a combined signal (yOUT[n]).
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Roi M. Shor, Avraham D. Gal, Peter Z. Rashev
  • Patent number: 9130628
    Abstract: A digital pre-distorter (DPD) for an RF transceiver system having multiple antennas includes a DPD controller, first and second address generators, stream select and antenna select muxes, first and second lookup tables (LUTs), first and second dynamic routing logic units, multipliers, an adder, and an accumulator. The DPD controller generates antenna select, stream select and stream routing signals indicative of selection of antennas, the first and second LUTs, and input signals. The DPD controller configures the DPD to share the multipliers and the first and second LUTs between multiple antennas by providing the antenna select signal to the antenna select mux, the stream select signal to the stream select mux, and the stream routing signals to the first and second dynamic routing logic units.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: September 8, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Akshat Mittal, Arvind Kaushik, Peter Z. Rashev, Amrit P. Singh
  • Patent number: 9100253
    Abstract: A method and apparatus for a radio base station (200) generates a multicarrier communication signal having a reduced crest factor by processing a block of samples (231) with a peak search window (271) to identify and suppress signal peaks exceeding a power threshold value.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: August 4, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jayakrishnan C. Mundarath, Leo G. Dehner, Jayesh H. Kotecha, Peter Z. Rashev
  • Patent number: 9088472
    Abstract: A system for reducing in-phase and quadrature-phase (I/Q) impairments includes first, second, third, and fourth programmable registers for storing respective first, second, third, and fourth values, first and second finite impulse response (FIR) filters having respective first and second sets of filter taps, and first and second adders. The first FIR filter receives an I input signal and generates first and second intermediate output signals based on the first and second values for I and Q channels, respectively. The second FIR filter receives a Q input signal and generates third and fourth intermediate output signals based on the third and fourth values for the I and Q channels, respectively. The first and second adders receive the first and second, and the third and fourth intermediate output signals, respectively, and generate compensated I and Q output signals for the I and Q channels.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: July 21, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Nikhil Jain, Arvind Kaushik, Peter Z. Rashev, Amrit P. Singh
  • Publication number: 20140044215
    Abstract: A method and apparatus for a radio base station (200) generates a multicarrier communication signal having a reduced crest factor by processing a block of samples (231) with a peak search window (271) to identify and suppress signal peaks exceeding a power threshold value.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Inventors: Jayakrishnan C. Mundarath, Leo G. Dehner, Jayesh H. Kotecha, Peter Z. Rashev