Patents by Inventor Peter Zalar

Peter Zalar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230403938
    Abstract: A piezoelectric device comprises a piezoelectric stack with a piezoelectric layer sandwiched between a bottom electrode and a top electrode to form a piezoelectric transducer. At least one of the bottom and top electrodes is a polymer electrode formed of a polymer based conductive material having a first resistivity. A conductive line structure is provided to forms an extended line contact with contact areas of the polymer electrode along a respective length of one or more conductive lines of the conductive line structure at least partially overlapping the contact areas. The conductive line structure is formed of a conductive material having a second resistivity that is lower than the first resistivity to help distribute an electrical field over the polymer electrode via the extended line contact.
    Type: Application
    Filed: October 26, 2021
    Publication date: December 14, 2023
    Inventors: Peter ZALAR, Edsger Constant Pieter SMITS, Maria Mathea Antonetta BURGHOORN, Daniele RAITERI
  • Publication number: 20230159781
    Abstract: The present disclosure relates to a negative temperature coefficient product comprising an electrically conductive percolation network of printable NTC material as particles in a cross-linked dielectric polymer matrix and to a method of manufacturing thereof. The particles comprising a spinel phase, preferably a C-spinel phase, having a general formula M3O4 comprising at least a first metal MI that is manganese and second metal MII that is nickel. In addition the particles include a nickel oxide phase. The printable NTC material can be dispersed in a printable NTC ink comprising a dispersant, from which the NTC product, e.g. a thermistor, can be formed, e.g., after drying of the dispersant. During processing the ink is kept at a temperature below 300° C. Optionally, the spinel phase comprises a further metal MIII. The weight fraction of nickel oxide with respect to the overall mass of the printable NTC material is preferably in a range between one and twenty weight percent.
    Type: Application
    Filed: April 23, 2021
    Publication date: May 25, 2023
    Inventors: Wilhelm Albert GROEN, Peter ZALAR, Edsger Constant Pieter SMITS
  • Publication number: 20220196492
    Abstract: The present disclosure concerns a pressure sensor, comprising at least two adjacent electrically conductive leads disposed in a pattern on a face of a first elastomeric carrier; and an electrically resistive layer formed of a electrically resistive composite material for shunting the at least two adjacent electrically conductive leads, said electrically conducting layer disposed on a face of a second elastomeric carrier. The first and second carriers are stacked across a spacer such that the at least two adjacent electrically conductive leads faces the electrically resistive layer across a gap defined by the spacer. The gap is formed by a pocket between the carriers.
    Type: Application
    Filed: April 17, 2020
    Publication date: June 23, 2022
    Inventors: Maria Mathea Antonetta BURGHOORN, Peter ZALAR, Jeroen VAN DEN BRAND, Daniele RAITERI, Edsger Constant Pieter SMITS
  • Publication number: 20220167897
    Abstract: A method of manufacturing a skin-compatible electrode (100) comprises printing a circuit pattern (P1) onto a flexible substrate (200) to form an electrically conductive pattern including an electrode pad area (301). A layer of an adhesive composition (401p) is printed in a second pattern (P2) onto the electrode pad area (301) to form an adhesive interface layer (401). The adhesive interface layer (401) is a dry film formed from the adhesive composition (401p) comprising an ionically conductive pressure sensitive adhesive composition comprising a resin (R), an ionic liquid (I), and optionally electrically conductive particles (P). A layer thickness and material of the flexible substrate, the conductive pattern, and the conductive adhesive interface have relatively low stiffness in plane of the flexible substrate (200).
    Type: Application
    Filed: March 6, 2020
    Publication date: June 2, 2022
    Inventors: Peter ZALAR, Edsger Constant Pieter SMITS, Inge VAN DER MEULEN, Stijn GILLISSEN, Carla NEGELE, Frank GOETHEL, Tobias ROSCHEK, Alissa BESLER
  • Patent number: 10991764
    Abstract: A photodetector array of a stacked film comprises, a plurality of first electrodes formed on a substrate and extending in parallel in a first direction, a plurality of second electrodes extending in parallel in a second direction crossing the first electrodes, a first organic thin film diode and a second organic thin film diode disposed between each of the first electrodes and each of the second electrodes, and an intermediate connection electrode layer serving as a common anode or a common cathode. The intermediate connection electrode layer connects the first organic thin film diode and the second organic thin film diode by backward-diode connection. At least either the first electrodes or the second electrodes are transparent with light passing therethrough, the first organic thin film diode is a photoresponsive organic diode, and the second organic thin film diode is an organic rectifier diode.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 27, 2021
    Assignee: SIGNTLE INC.
    Inventors: Peter Zalar, Naoji Matsuhisa, Takao Someya
  • Publication number: 20190378880
    Abstract: There is provide a photodetector array of a stacked film, which comprises a plurality of first electrodes formed on a substrate and extending in parallel in a first direction, a plurality of second electrodes extending in parallel in a second direction crossing the first electrodes, a first organic thin film diode and a second organic thin film diode disposed between each of the first electrodes and each of the second electrodes, and an intermediate connection electrode layer serving as a common anode or a common cathode. The intermediate connection electrode layer connects the first organic thin film diode and the second organic thin film diode by backward-diode connection. At least either the first electrodes or the second electrodes are transparent with light passing therethrough, the first organic thin film diode is a photoresponsive organic diode, and the second organic thin film diode is an organic rectifier diode.
    Type: Application
    Filed: January 11, 2018
    Publication date: December 12, 2019
    Applicant: SIGNTLE INC.
    Inventors: Peter ZALAR, Naoji MATSUHISA, Takao SOMEYA
  • Patent number: 9000423
    Abstract: Methods and compositions to improve the performance of single-component polymer FETs is provided comprising processing a conjugated polymer in the presence of a processing additive. Also provided is a FET device fabricated with a processing additive. Such devices have increased saturation hole and/or electron mobility compared to a control FETs.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: April 7, 2015
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Thuc-Quyen Nguyen, Lei Ying, Peter Zalar, Yuan Zhang
  • Patent number: 8729221
    Abstract: Embodiments of the invention include polymers comprising a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chain, as well as methods and materials for producing such polymers. Illustrative methods include regioselectively preparing a monomer that includes an enantiopure or enantioenriched chiral side group, and then reacting these monomers to produce a polymer that comprises a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chains. In illustrative embodiments of the invention, the regioregular conjugated main chain section can contain a repeat unit that includes a dithiophene and a pyridine.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: May 20, 2014
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Lei Ying, Peter Zalar, Thuc-Quyen Nguyen
  • Publication number: 20130277658
    Abstract: Methods and compositions to improve the performance of single-component polymer FETs is provided comprising processing a conjugated polymer in the presence of a processing additive. Also provided is a FET device fabricated with a processing additive. Such devices have increased saturation hole and/or electron mobility compared to a control FETs.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 24, 2013
    Applicant: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Thuc-Quyen Nguyen, Lei Ying, Peter Zalar, Yuan Zhang