Patents by Inventor Peter Zijlstra

Peter Zijlstra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11359231
    Abstract: A method for sensing an analyte uses tethered particle motion. A functionalized particle has a first state in which the functionalized particle is bound to the surface and a second state in which the functionalized particle is not bound to the surface, where the functionalized particle switches between the first and second states depending on the presence and absence of the analyte, thereby changing motion characteristics of the functionalized particle depending on the presence of the analyte. A spatial coordinate parameter of the functionalized particle is measured by a detector, and a processor determines the presence/concentration of the analyte from changes in the measured spatial coordinate parameter.
    Type: Grant
    Filed: December 21, 2019
    Date of Patent: June 14, 2022
    Assignee: Technische Universiteit Eindhoven
    Inventors: Menno Willem José Prins, Maarten Merkx, Leonardus Josephus van Ijzendoorn, Peter Zijlstra, Emilius Willem Adriaan Visser, Max Rose-Marie Wilhelmus Scheepers
  • Publication number: 20200140932
    Abstract: A method for sensing an analyte uses tethered particle motion. A functionalized particle has a first state in which the functionalized particle is bound to the surface and a second state in which the functionalized particle is not bound to the surface, where the functionalized particle switches between the first and second states depending on the presence and absence of the analyte, thereby changing motion characteristics of the functionalized particle depending on the presence of the analyte. A spatial coordinate parameter of the functionalized particle is measured by a detector, and a processor determines the presence/concentration of the analyte from changes in the measured spatial coordinate parameter.
    Type: Application
    Filed: December 21, 2019
    Publication date: May 7, 2020
    Inventors: Menno Willem José Prins, Maarten Merkx, Leonardus Josephus van Ijzendoorn, Peter Zijlstra, Emilius Willem Adriaan Visser, Max Rose-Marie Wilhelmus Scheepers
  • Patent number: 10620195
    Abstract: An analyte in a matrix is sensed using a sensing device having a detection probe conjugated to a mediator-receptor that is not a binder for the analyte. The sensor device is provided with mediators conjugated to analyte-receptors, where the mediators are selected to bind to the mediator-receptors, and where the analyte-receptors are selected to bind to the analyte. In some embodiments, the mediators are bound to the detection probe by a tether molecule, or tether molecule fragment, or tether domain. In other embodiments, the mediators are not bound to the detection probe. The presence of the analyte is detected by optically or electrically detecting changes of distance between the mediators and the mediator-receptor, indicative of association and/or dissociation events between mediators and mediator-receptor, the characteristics of which are affected by whether the analyte is bound to the analyte-receptor.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: April 14, 2020
    Assignee: Technische Universiteit Eindhoven
    Inventors: Menno Willem José Prins, Peter Zijlstra, Lucas Brunsveld
  • Patent number: 10519486
    Abstract: A method for sensing an analyte uses tethered particle motion. A functionalized particle [500] has a first state [504] in which the functionalized particle is bound to the surface and a second state [502] in which the functionalized particle is not bound to the surface, where the functionalized particle switches between the first and second states depending on the presence and absence of the analyte, thereby changing motion characteristics of the functionalized particle depending on the presence of the analyte. A spatial coordinate parameter of the functionalized particle is measured by a detector [516], and a processor [518] determines the presence/concentration of the analyte from changes in the measured spatial coordinate parameter.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: December 31, 2019
    Assignee: Technische Universiteit Eindhoven
    Inventors: Menno Willem José Prins, Maarten Merkx, Leonardus Josephus van Ijzendoorn, Peter Zijlstra, Emilius Willem Adriaan Visser, Max Rose-Marie Wilhelmus Scheepers
  • Patent number: 10330676
    Abstract: A target analyte in a matrix is sensed using a sensor device having protrusions [500] such as e.g. nanorods, containing free charge carriers. Conformational molecules [504, 506] are bound at a first end to the protrusions, and bound at a second end to a label [502] e.g. a nanoparticle, that is free to move relative to the protrusions. The conformational molecule changes its conformation when bound to the analyte, thereby changing the distance and/or the relative orientation of the label to the protrusion. Energy [510] is used to excite free electrons in the protrusion near a plasmon resonance and resulting optical radiation [514] at wavelengths near the plasmon resonance wavelength is detected [516] and analyzed [518] to determined the presence/concentration of the analyte.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: June 25, 2019
    Assignee: Technische Universiteit Eindhoven
    Inventors: Peter Zijlstra, Menno Willem José Prins
  • Publication number: 20170362645
    Abstract: A method for sensing an analyte uses tethered particle motion. A functionalized particle [500] has a first state [504] in which the functionalized particle is bound to the surface and a second state [502] in which the functionalized particle is not bound to the surface, where the functionalized particle switches between the first and second states depending on the presence and absence of the analyte, thereby changing motion characteristics of the functionalized particle depending on the presence of the analyte. A spatial coordinate parameter of the functionalized particle is measured by a detector [516], and a processor [518] determines the presence/concentration of the analyte from changes in the measured spatial coordinate parameter.
    Type: Application
    Filed: December 15, 2015
    Publication date: December 21, 2017
    Inventors: Menno Willem José Prins, Maarten Merkx, Leonardus Josephus van Ijzendoorn, Peter Zijlstra, Emilius Willem Adriaan Visser, Max Rose-Marie Wilhelmus Scheepers
  • Publication number: 20170328894
    Abstract: A target analyte in a matrix is sensed using a sensor device having protrusions [500] such as e.g. nanorods, containing free charge carriers. Conformational molecules [504, 506] are bound at a first end to the protrusions, and bound at a second end to a label [502] e.g. a nanoparticle, that is free to move relative to the protrusions. The conformational molecule changes its conformation when bound to the analyte, thereby changing the distance and/or the relative orientation of the label to the protrusion. Energy [510] is used to excite free electrons in the protrusion near a plasmon resonance and resulting optical radiation [514] at wavelengths near the plasmon resonance wavelength is detected [516] and analyzed [518] to determined the presence/concentration of the analyte.
    Type: Application
    Filed: November 12, 2015
    Publication date: November 16, 2017
    Inventors: Peter Zijlstra, Menno Willem José Prins
  • Publication number: 20170315115
    Abstract: An analyte [25] in a matrix is sensed using a sensing device having a detection probe [21] conjugated to a mediator-receptor [22] that is not a binder for the analyte. The sensor device is provided with mediators [23] conjugated to analyte-receptors [24], where the mediators are selected to bind to the mediator-receptors, and where the analyte-receptors are selected to bind to the analyte. In some embodiments, the mediators are bound to the detection probe by a tether molecule, or tether molecule fragment, or tether domain. In other embodiments, the mediators are not bound to the detection probe. The presence of the analyte is detected by optically or electrically detecting changes of distance between the mediators and the mediator-receptor, indicative of association and/or dissociation events between mediators and mediator-receptor, the characteristics of which are affected by whether the analyte is bound to the analyte-receptor.
    Type: Application
    Filed: November 12, 2015
    Publication date: November 2, 2017
    Inventors: Menno Willem José Prins, Peter Zijlstra, Lucas Brunsveld