Patents by Inventor Petra Grewer

Petra Grewer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9862633
    Abstract: A lithium-containing, transparent glass-ceramic material is provided. The material has low thermal expansion and has an amorphous, lithium-depleted, vitreous surface zone. The zone is at least 50 nm thick on all sides and encloses a crystalline interior, which has high transmission. The material includes a transition region connecting the zone and the interior.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: January 9, 2018
    Assignee: SCHOTT AG
    Inventors: Falk Gabel, Otmar Becker, Michael Glasenapp, Jan-Peter Ortmann, Petra Grewer, Veit Luther, Harald Striegler, Dietmar Wennemann, Thomas Schuler, Thoralf Johansson, Helga Goetz, Michael Bug, Guenther Siebenhaar, Gerhard Hahn, Friedrich-Georg Schroeder
  • Publication number: 20160130171
    Abstract: A lithium-containing, transparent glass-ceramic material is provided. The material has low thermal expansion and has an amorphous, lithium-depleted, vitreous surface zone. The zone is at least 50 nm thick on all sides and encloses a crystalline interior, which has high transmission. The material includes a transition region connecting the zone and the interior.
    Type: Application
    Filed: December 29, 2015
    Publication date: May 12, 2016
    Applicant: Schott AG
    Inventors: Falk GABEL, Otmar BECKER, Michael GLASENAPP, Jan-Peter ORTMANN, Petra GREWER, Veit LUTHER, Harald STRIEGLER, Dietmar WENNEMANN, Thomas SCHULER, Thoralf JOHANSSON, Helga GOETZ, Michael BUG, Guenther SIEBENHAAR, Gerhard HAHN, Friedrich-Georg SCHROEDER
  • Patent number: 9249045
    Abstract: A lithium-containing, transparent glass-ceramic material is provided. The material has low thermal expansion and has an amorphous, lithium-depleted, vitreous surface zone. The zone is at least 50 nm thick on all sides and encloses a crystalline interior, which has high transmission. The material includes a transition region connecting the zone and the interior.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: February 2, 2016
    Assignee: SCHOTT AG
    Inventors: Falk Gabel, Otmar Becker, Michael Glasenapp, Jan-Peter Ortmann, Petra Grewer, Veit Luther, Harald Striegler, Dietmar Wennemann, Thomas Schuler, Thoralf Johansson, Helga Goetz, Michael Bug, Guenther Siebenhaar, Gerhard Hahn, Friedrich-Georg Schroeder
  • Publication number: 20130224493
    Abstract: A lithium-containing, transparent glass-ceramic material is provided. The material has low thermal expansion and has an amorphous, lithium-depleted, vitreous surface zone. The zone is at least 50 nm thick on all sides and encloses a crystalline interior, which has high transmission. The material includes a transition region connecting the zone and the interior.
    Type: Application
    Filed: July 7, 2011
    Publication date: August 29, 2013
    Applicant: SCHOTT AG
    Inventors: Falk Gabel, Otmar Becker, Michael Glasenapp, Jan-Peter Ortmann, Petra Grewer, Veit Luther, Harald Striegler, Dietmar Wennemann, Thomas Schuler, Thoralf Johansson, Helga Goetz, Michael Bug, Guenther Benhaar, Gerhard Hahn, Friedrich-Georg Schroeder
  • Patent number: 7981823
    Abstract: A transparent, colorless lithium-aluminosilicate glass ceramic plate with high-quartz mixed crystals as the prevailing crystal phase, which is provided on one side with an opaque, colored, temperature-stable coating over the entire surface or over the entire surface to a large extent, is described, which has a content of Nd2O3 of 40 to 4000 ppm, a Yellowness Index of less than 10% with a 4 mm glass (ceramic) layer thickness, and a variegation of colors of the glass or the glass ceramic in the CIELAB color system of C* of less than 5. The glass ceramic plate preferably has a composition (in % by weight based on oxide) of: Li2O 3.0-4.5, Na2O 0-1.5, K2O 0-1.5, ?Na2O+K2O 0.2-2.0, MgO 0-2.0, CaO 0-1.5, SrO 0-1.5, BaO 0-2.5, ZnO 0-2.5, B2O3 0-1.0, Al2O3 19-25, SiO2 55-69, TiO2 1-3, ZrO2 1-2.5, SnO2 0-0.4, ?SnO2+TiO2<3, P2O5 0-3.0, Nd2O3 0.01-0.4, CoO 0.0-0.004.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: July 19, 2011
    Assignee: Schott AG
    Inventors: Friedrich Siebers, Ulrich Schiffner, Wolfgang Schmidbauer, Klaus Schönberger, Petra Grewer, Erich Rodek
  • Publication number: 20100130342
    Abstract: A transparent, colorless lithium-aluminosilicate glass ceramic plate with high-quartz mixed crystals as the prevailing crystal phase, which is provided on one side with an opaque, colored, temperature-stable coating over the entire surface or over the entire surface to a large extent, is described, which has a content of Nd2O3 of 40 to 4000 ppm, a Yellowness Index of less than 10% with a 4 mm glass (ceramic) layer thickness, and a variegation of colors of the glass or the glass ceramic in the CIELAB color system of C* of less than 5. The glass ceramic plate preferably has a composition (in % by weight based on oxide) of: Li2O 3.0-4.5, Na2O 0-1.5, K2O 0-1.5, ?Na2O+K2O 0.2-2.0, MgO 0-2.0, CaO 0-1.5, SrO 0-1.5, BaO 0-2.5, ZnO 0-2.5, B2O3 0-1.0, Al2O3 19-25, SiO2 55-69, TiO2 1-3, ZrO2 1-2.5, SnO2 0-0.4, ?SnO2+TiO2<3, P2O5 0-3.0, Nd2O3 0.01-0.4, CoO 0.0-0.
    Type: Application
    Filed: August 13, 2009
    Publication date: May 27, 2010
    Inventors: Friedrich Siebers, Ulrich Schiffner, Wolfgang Schmidbauer, Klaus Schönberger, Petra Grewer, Erich Rodek
  • Publication number: 20080199622
    Abstract: A transparent, colorless glass or glass-ceramic panel has a visually dense, high-temperature-stable coating having an organic/inorganic network structure containing filling material particles and a color-imparting pigment. The mechanically stable, visually dense coating has no melt-reaction zone at the surface of the panel, which is coated with the coating, so that it does not impair the panel strength. The inorganic network structure can be made from a SiO2-based sol. The coating is made by introducing the color-imparting pigment and the filling material particles into a reactive organic/inorganic network structure; applying the resulting organic/inorganic network structure containing the pigment and the filling material particles to the panel to coat the panel and then burning-in the organic/inorganic network structure with the pigment and the filling material particles under thermal conditions to form the coating with no melt-reaction zone.
    Type: Application
    Filed: February 5, 2008
    Publication date: August 21, 2008
    Inventors: Gabriele Roemer-Scheuermann, Andrea Anton, Harald Striegler, Thomas Kraus, Gerhard Weber, Lutz Klippe, Veit Luther, Petra Grewer
  • Patent number: 7361405
    Abstract: A transparent, colorless glass or glass-ceramic panel has a visually dense, high-temperature-stable coating having an organic/inorganic network structure containing filling material particles and a color-imparting pigment. The mechanically stable, visually dense coating has no melt-reaction zone at the surface of the panel, which is coated with the coating, so that it does not impair the panel strength. The inorganic network structure can be made from a SiO2-based sol. The coating is made by introducing the color-imparting pigment and the filling material particles into a reactive organic/inorganic network structure; applying the resulting organic/inorganic network structure containing the pigment and the filling material particles to the panel to coat the panel and then burning-in the organic/inorganic network structure with the pigment and the filling material particles under thermal conditions to form the coating with no melt-reaction zone.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: April 22, 2008
    Assignee: Schott AG
    Inventors: Gabriele Roemer-Scheuermann, Andrea Anton, Harald Striegler, Thomas Kraus, Gerhard Weber, Lutz Klippe, Veit Luther, Petra Grewer
  • Publication number: 20070232476
    Abstract: A transparent, colorless lithium-aluminosilicate glass ceramic plate with high-quartz mixed crystals as the prevailing crystal phase, which is provided on one side with an opaque, colored, temperature-stable coating over the entire surface or over the entire surface to a large extent, is described, which has a content of Nd2O3 of 40 to 4000 ppm, a Yellowness Index of less than 10% with a 4 mm glass (ceramic) layer thickness, and a variegation of colors of the glass or the glass ceramic in the CIELAB color system of C* of less than 5. The glass ceramic plate preferably has a composition (in % by weight based on oxide) of: Li2O 3.0-4.5, Na2O 0-1.5, K2O 0-1.5, ?Na2O+K2O 0.2-2.0, MgO 0-2.0, CaO 0-1.5, SrO 0-1.5, BaO 0-2.5, ZnO 0-2.5, B2O3 0-1.0, Al2O3 19-25, SiO2 55-69, TiO2 1-3, ZrO2 1-2.5, SnO2 0-0.4, ?SnO2+TiO2<3, P2O5 0-3.0, Nd2O3 0.01-0.4, CoO 0.0-0.
    Type: Application
    Filed: March 19, 2007
    Publication date: October 4, 2007
    Inventors: Friedrich Siebers, Ulrich Schiffner, Wolfgang Schmidbauer, Klaus Schonberger, Petra Grewer, Erich Rodek
  • Publication number: 20050129959
    Abstract: A transparent, colorless glass or glass-ceramic panel has a visually dense, high-temperature-stable coating having an organic/inorganic network structure containing filling material particles and a color-imparting pigment. The mechanically stable, visually dense coating has no melt-reaction zone at the surface of the panel, which is coated with the coating, so that it does not impair the panel strength. The inorganic network structure can be made from a SiO2-based sol. The coating is made by introducing the color-imparting pigment and the filling material particles into a reactive organic/inorganic network structure; applying the resulting organic/inorganic network structure containing the pigment and the filling material particles to the panel to coat the panel and then burning-in the organic/inorganic network structure with the pigment and the filling material particles under thermal conditions to form the coating with no melt-reaction zone.
    Type: Application
    Filed: November 19, 2004
    Publication date: June 16, 2005
    Inventors: Gabriele Roemer-Scheuermann, Andrea Anton, Harald Striegler, Thomas Kraus, Gerhard Weber, Lutz Klippe, Veit Luther, Petra Grewer