Patents by Inventor Petre Vatahov

Petre Vatahov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11672491
    Abstract: Validation of a therapeutic radiation treatment involves using an applicator balloon surrounding an X-ray radiation source to support a plurality of X-ray sensor elements (XRSE). The XRSE are supported on the applicator balloon at distributed locations to sense applied radiation from the radiation source. At least one parameter of the applied radiation which has been sensed by the XRSE is compared to a corresponding parameter of a predetermined radiation treatment plan. Based on the comparing, a determination is made as to whether one or more requirements of the predetermined radiation treatment plan have been satisfied.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 13, 2023
    Assignee: EMPYREAN MEDICAL SYSTEMS, INC.
    Inventors: Kalman Fishman, Brian P. Wilfley, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell, Yonatan Vainer
  • Publication number: 20230178324
    Abstract: X-ray target element is comprised of a planar wafer. The planar wafer element includes a target layer and a substrate layer. The target layer is comprised of an element having a relatively high atomic number and the substrate layer is comprised of diamond. The substrate layer is configured to support the target layer and facilitate transfer of thermal energy away from the target layer.
    Type: Application
    Filed: December 5, 2022
    Publication date: June 8, 2023
    Inventors: Kalman Fishman, Brian P. Wilfley, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell
  • Patent number: 11521820
    Abstract: X-ray target element is comprised of a planar wafer. The planar wafer element includes a target layer and a substrate layer. The target layer is comprised of an element having a relatively high atomic number and the substrate layer is comprised of diamond. The substrate layer is configured to support the target layer and facilitate transfer of thermal energy away from the target layer.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: December 6, 2022
    Assignee: EMPYREAN MEDICAL SYSTEMS, INC.
    Inventors: Kalman Fishman, Brian P. Wilfley, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell
  • Publication number: 20200234908
    Abstract: X-ray target element is comprised of a planar wafer. The planar wafer element includes a target layer and a substrate layer. The target layer is comprised of an element having a relatively high atomic number and the substrate layer is comprised of diamond. The substrate layer is configured to support the target layer and facilitate transfer of thermal energy away from the target layer.
    Type: Application
    Filed: March 31, 2020
    Publication date: July 23, 2020
    Inventors: Kalman Fishman, Brian P. Wilfley, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell
  • Patent number: 10607802
    Abstract: Three dimensional beam forming X-ray source includes an electron beam generator (EBG) to generate an electron beam. A target element is disposed a predetermined distance from the EBG and positioned to intercept the electron beam. The target element is responsive to the electron beam to generate X-ray radiation. A beam former is disposed proximate to the target element and comprised of a material which interacts with the X-ray radiation to form an X-ray beam. An EBG control system controls at least one of a beam pattern and a direction of the X-ray beam by selectively varying a location where the electron beam intersects the target element to control an interaction of the X-ray radiation with the beam-former.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: March 31, 2020
    Assignee: SENSUS HEALTHCARE, INC.
    Inventors: Kalman Fishman, Brian P. Wilfley, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell
  • Publication number: 20200038691
    Abstract: Validation of a therapeutic radiation treatment involves using an applicator balloon surrounding an X-ray radiation source to support a plurality of X-ray sensor elements (XRSE). The XRSE are supported on the applicator balloon at distributed locations to sense applied radiation from the radiation source. At least one parameter of the applied radiation which has been sensed by the XRSE is compared to a corresponding parameter of a predetermined radiation treatment plan. Based on the comparing, a determination is made as to whether one or more requirements of the predetermined radiation treatment plan have been satisfied.
    Type: Application
    Filed: October 7, 2019
    Publication date: February 6, 2020
    Inventors: Kalman Fishman, Brian P. Wilfley, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell, Yonatan Vainer
  • Publication number: 20180286623
    Abstract: Three dimensional beam forming X-ray source includes an electron beam generator (EBG) to generate an electron beam. A target element is disposed a predetermined distance from the EBG and positioned to intercept the electron beam. The target element is responsive to the electron beam to generate X-ray radiation. A beam former is disposed proximate to the target element and comprised of a material which interacts with the X-ray radiation to form an X-ray beam. An EBG control system controls at least one of a beam pattern and a direction of the X-ray beam by selectively varying a location where the electron beam intersects the target element to control an interaction of the X-ray radiation with the beam-former.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 4, 2018
    Inventors: Kalman Fishman, Brian P. Wilfley, Christopher W. Ellenor, Donald Olgado, Chwen-Yuan Ku, Tobias Funk, Petre Vatahov, Christopher R. Mitchell
  • Publication number: 20060177001
    Abstract: Methods for connecting electrical potential to an extractor cup at the cathode of a miniature x-ray tube are disclosed. The various connection schemes are designed to form a rugged and conveniently manufacturable connection between the metal extractor cup and one side of the cathode filament, so that the extractor cup shapes the path of electrons as desired en route to the anode of the tube. Some of the disclosed connections involve evaporation of conductive metal or other materials off the filament when the filament is first activated. Others involve applying a paste or paint conductive precursor directly to a base to connect a post and the extractor, the paste being heat-cured after the completion of assembly. Others involve a fine wire or spring strip from one filament post to the walls of the extractor cup. Other schemes include welded or brazed wires or foil, crimping, pinching, swaging and other connections, all made inside the tube enclosure.
    Type: Application
    Filed: March 13, 2004
    Publication date: August 10, 2006
    Inventors: Paul Lovoi, Petre Vatahov, Earl Dozier, Peter Smith, Leonard Reed, Robert Neimeyer
  • Publication number: 20060093091
    Abstract: Methods for connecting electrical potential to an extractor cup at the cathode of a miniature x-ray tube are disclosed. The various connection schemes are designed to form a rugged and conveniently manufacturable connection between the metal extractor cup and one side of the cathode filament, so that the extractor cup shapes the path of electrons as desired en route to the anode of the tube. Some of the disclosed connections involve evaporation of conductive metal or other materials off the filament when the filament is first activated. Others involve applying a paste or paint conductive precursor directly to a base to connect a post and the extractor, the paste being heat-cured after the completion of assembly. Others involve a fine wire or spring strip from one filament post to the walls of the extractor cup. Other schemes include welded or brazed wires or foil, crimping, pinching, swaging and other connections, all made inside the tube enclosure.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 4, 2006
    Inventors: Paul Lovoi, Petre Vatahov, Earl Dozier, Peter Smith, Leonard Reed, Robert Neimeyer