Patents by Inventor Petri Klemetti

Petri Klemetti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8794047
    Abstract: A method and apparatus for the precise measuring operation of a micromechanical rotation rate sensor, including at least one deflectively suspended seismic mass, at least one drive device for driving the seismic mass, and at least one first and one second trimming electrode element, which are jointly assigned directly or indirectly to the seismic mass, a first electrical trimming voltage (UTO1, UTLO1, UTRO1) being set between the first trimming electrode element and the seismic mass, and a second electrical trimming voltage (UTO2, UTLO2, UTRO2) being set between the second trimming electrode element and the seismic mass, the first and the second electrical trimming voltages being set at least as a function of a quadrature parameter (UT) and a resonance parameter (Uf).
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: August 5, 2014
    Assignees: Continental Teves AG & Co. oHG, VTI Technologies Oy
    Inventors: Stefan Günthner, Roland Hilser, Ramnath Sivaraman, Bernhard Schmid, Petri Klemetti
  • Patent number: 8646333
    Abstract: The invention relates to measuring devices to be used in the measuring of angular velocity and, more precisely, to vibrating micromechanical sensors of angular velocity. In a sensor of angular velocity according to the invention, a mass is supported to the frame of the sensor component by means of an asymmetrical spring structure (1), (2), (3), (4), (22), (24) in such a way, that the coupling from one mode of motion to another, conveyed by the spring (1), (2), (3), (4), (22), (24), cancels or alleviates the coupling caused by the non-ideality due to the skewness in the springs or in their support. The structure of the sensor of angular velocity according to the invention enables reliable measuring with good performance, particularly in small vibrating micromechanical solutions for sensors of angular velocity.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: February 11, 2014
    Assignee: Murata Electronics Oy
    Inventors: Petri Klemetti, Kaisa Nera, Antti Lipsanen, Anssi Blomqvist, Altti Torkkeli
  • Patent number: 8635909
    Abstract: The invention relates to measuring devices to be used in the measuring of angular velocity and, more precisely, to vibrating micromechanical sensors of angular velocity. In a sensor of angular velocity according to the invention, a mass is supported to the frame of the sensor component by means of an asymmetrical spring structure (1), (2), (3), (4), (22), (24) in such a way, that the coupling from one mode of motion to another, conveyed by the spring (1), (2), (3), (4), (22), (24), cancels or alleviates the coupling caused by the non-ideality due to the skewness in the springs or in their support. The structure of the sensor of angular velocity according to the invention enables reliable measuring with good performance, particularly in small vibrating micromechanical solutions for sensors of angular velocity.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: January 28, 2014
    Assignee: Murata Electronics Oy
    Inventors: Petri Klemetti, Kaisa Nera, Antti Lipsanen, Anssi Blomqvist, Altti Torkkeli
  • Publication number: 20120118062
    Abstract: A method and apparatus for the precise measuring operation of a micromechanical rotation rate sensor, including at least one deflectively suspended seismic mass, at least one drive device for driving the seismic mass, and at least one first and one second trimming electrode element, which are jointly assigned directly or indirectly to the seismic mass, a first electrical trimming voltage (UTO1, UTLO1, UTRO1) being set between the first trimming electrode element and the seismic mass, and a second electrical trimming voltage (UTO2, UTLO2, UTRO2) being set between the second trimming electrode element and the seismic mass, the first and the second electrical trimming voltages being set at least as a function of a quadrature parameter (UT) and a resonance parameter (Uf).
    Type: Application
    Filed: April 28, 2010
    Publication date: May 17, 2012
    Applicants: VTI Technologies OY, Continental Teves AG & Co., OHG
    Inventors: Stefan Günthner, Roland Hilser, Ramnath Sivaraman, Bernhard Schmid, Petri Klemetti
  • Publication number: 20120085168
    Abstract: The invention relates to measuring devices to be used in the measuring of angular velocity and, more precisely, to vibrating micromechanical sensors of angular velocity. In a sensor of angular velocity according to the invention, a mass is supported to the frame of the sensor component by means of an asymmetrical spring structure (1), (2), (3), (4), (22), (24) in such a way, that the coupling from one mode of motion to another, conveyed by the spring (1), (2), (3), (4), (22), (24), cancels or alleviates the coupling caused by the non-ideality due to the skewness in the springs or in their support. The structure of the sensor of angular velocity according to the invention enables reliable measuring with good performance, particularly in small vibrating micromechanical solutions for sensors of angular velocity.
    Type: Application
    Filed: December 16, 2011
    Publication date: April 12, 2012
    Applicant: VTI TECHNOLOGIES OY
    Inventors: Petri KLEMETTI, Kaisa NERA, Antti LIPSANEN, Anssi BLOMQVIST, Altti TORKKELI
  • Publication number: 20120085167
    Abstract: The invention relates to measuring devices to be used in the measuring of angular velocity and, more precisely, to vibrating micromechanical sensors of angular velocity. In a sensor of angular velocity according to the invention, a mass is supported to the frame of the sensor component by means of an asymmetrical spring structure (1), (2), (3), (4), (22), (24) in such a way, that the coupling from one mode of motion to another, conveyed by the spring (1), (2), (3), (4), (22), (24), cancels or alleviates the coupling caused by the non-ideality due to the skewness in the springs or in their support. The structure of the sensor of angular velocity according to the invention enables reliable measuring with good performance, particularly in small vibrating micromechanical solutions for sensors of angular velocity.
    Type: Application
    Filed: December 16, 2011
    Publication date: April 12, 2012
    Applicant: VTI Technologies Oy
    Inventors: Petri KLEMETTI, Kaisa NERA, Antti LIPSANEN, Anssi BLOMQVIST, Altti TORKKELI
  • Patent number: 8104343
    Abstract: The invention relates to measuring devices to be used in the measuring of angular velocity and, more precisely, to vibrating micromechanical sensors of angular velocity. In a sensor of angular velocity according to the invention, a mass is supported to the frame of the sensor component by means of an asymmetrical spring structure (1), (2), (3), (4), (22), (24) in such a way, that the coupling from one mode of motion to another, conveyed by the spring (1), (2), (3), (4), (22), (24), cancels or alleviates the coupling caused by the non-ideality due to the skewness in the springs or in their support. The structure of the sensor of angular velocity according to the invention enables reliable measuring with good performance, particularly in small vibrating micromechanical solutions for sensors of angular velocity.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: January 31, 2012
    Assignee: VTI Technologies Oy
    Inventors: Petri Klemetti, Kaisa Nera, Antti Lipsanen, Anssi Blomqvist, Altti Torkkeli
  • Publication number: 20090165553
    Abstract: The invention relates to measuring devices to be used in the measuring of angular velocity and, more precisely, to vibrating micromechanical sensors of angular velocity. In a sensor of angular velocity according to the invention, a mass is supported to the frame of the sensor component by means of an asymmetrical spring structure (1), (2), (3), (4), (22), (24) in such a way, that the coupling from one mode of motion to another, conveyed by the spring (1), (2), (3), (4), (22), (24), cancels or alleviates the coupling caused by the non-ideality due to the skewness in the springs or in their support. The structure of the sensor of angular velocity according to the invention enables reliable measuring with good performance, particularly in small vibrating micromechanical solutions for sensors of angular velocity.
    Type: Application
    Filed: October 3, 2008
    Publication date: July 2, 2009
    Inventors: Petri Klemetti, Kaisa Nera, Antti Lipsanen, Anssi Blomqvist, Altti Torkkeli