Patents by Inventor Petro Maksymovych

Petro Maksymovych has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230161220
    Abstract: A truncated non-linear interferometer-based sensor system includes an input port that receives an optical beam and a non-linear amplifier that amplifies the optical beam with a pump beam and renders a probe beam and a conjugate beam. The system’s local oscillators have a relationship with the respective beams. The system includes a sensor that transduces an input with the probe beam and the conjugate beam or their respective local oscillators. It includes one or more phase-sensitive detectors that detect a phase modulation between the respective local oscillators and the probe beam and the conjugate beam. Output from the phase-sensitive-detectors is based on the detected phase modulation. The phase-sensor-detectors include measurement circuitry that measure the phase signals. The measurement is the sum or difference of the phase signals in which the measured combination exhibit a quantum noise reduction in an intensity difference or a phase sum or an amplitude difference quadrature.
    Type: Application
    Filed: January 23, 2023
    Publication date: May 25, 2023
    Inventors: Raphael C. Pooser, Benjamin J. Lawrie, Petro Maksymovych
  • Patent number: 11561453
    Abstract: A truncated non-linear interferometer-based sensor system includes an input that receives an optical beam and a non-linear amplifier that generates a probe beam and a conjugate beam from the optical beam. The system's local oscillators are related to the probe beam and the conjugate beam. The system includes a sensor that transduces an input with the probe beam and the conjugate beam. The transduction detects changes in the phase of each of the probe beam and the conjugate beam. The system's phase sensitive detectors detect phase modulations between the respective local oscillators, the probe beam, and the conjugate beam and outputs phase signals based on detected phase modulations. The system measures phase signals indicative of the sensor's input resulting from a sum or difference of the phase signals. The measurement exhibits a quantum noise reduction in an intensity difference, a phase sum, or an amplitude difference quadrature.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: January 24, 2023
    Assignee: UT-BATTELLE, LLC
    Inventors: Raphael C. Pooser, Benjamin J. Lawrie, Petro Maksymovych
  • Publication number: 20210405503
    Abstract: A truncated non-linear interferometer-based sensor system includes an input that receives an optical beam and a non-linear amplifier that generates a probe beam and a conjugate beam from the optical beam. The system's local oscillators are related to the probe beam and the conjugate beam. The system includes a sensor that transduces an input with the probe beam and the conjugate beam. The transduction detects changes in the phase of each of the probe beam and the conjugate beam. The system's phase sensitive detectors detect phase modulations between the respective local oscillators, the probe beam, and the conjugate beam and outputs phase signals based on detected phase modulations. The system measures phase signals indicative of the sensor's input resulting from a sum or difference of the phase signals. The measurement exhibits a quantum noise reduction in an intensity difference, a phase sum, or an amplitude difference quadrature.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Inventors: Raphael C. Pooser, Benjamin J. Lawrie, Petro Maksymovych
  • Patent number: 11119386
    Abstract: A truncated non-linear interferometer-based atomic force microscope (AFM) includes an input port and a non-linear amplifier that renders a probe beam and a conjugate beam. The AFM includes local oscillators having a relationship with the probe beam and the conjugate beam. The displacement of the AFM's cantilever is transduced by the probe beam, and/or the conjugate beam or their respective local oscillators. The AFM's phase-sensitive detectors detect a phase modulation between the respective local oscillators and the probe beam and the conjugate beam. The detected phase modulation corresponds to the change in phase. The AFM's circuitry measures phase signals that are indicative of the cantilever displacement. The resulting measurement signals exhibit a quantum noise reduction in either the intensity difference or phase sum quadrature.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: September 14, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Raphael C. Pooser, Benjamin J. Lawrie, Petro Maksymovych
  • Publication number: 20210190819
    Abstract: A truncated non-linear interferometer-based atomic force microscope (AFM) includes an input port and a non-linear amplifier that renders a probe beam and a conjugate beam. The AFM includes local oscillators having a relationship with the probe beam and the conjugate beam. The displacement of the AFM's cantilever is transduced by the probe beam, and/or the conjugate beam or their respective local oscillators. The AFM's phase-sensitive detectors detect a phase modulation between the respective local oscillators and the probe beam and the conjugate beam. The detected phase modulation corresponds to the change in phase. The AFM's circuitry measures phase signals that are indicative of the cantilever displacement. The resulting measurement signals exhibit a quantum noise reduction in either the intensity difference or phase sum quadrature.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 24, 2021
    Inventors: Raphael C. Pooser, Benjamin J. Lawrie, Petro Maksymovych
  • Patent number: 10160645
    Abstract: Microwave AC conductivity may be improved or tuned in a material, for example, a dielectric or semiconductor material, by manipulating domain wall morphology in the material. Domain walls may be created, erased or reconfigured to control the AC conductivity, for example, for crafting circuit elements. The density and placement of domain walls may increase or decrease the AC conductivity and may control AC conduction pathways through the material. An electric potential applied to the material's surface may create a desired pattern of domain walls to meet desired AC conductivity criteria. Incline angle of the domain walls may be modified relative to a crystallographic axis of the material to temporarily or permanently modify or gate AC conductivity of the material. For example, the AC conductivity of the material may be gated by domain wall incline angle to increase, decrease or throttle current flowing through the material for an electronic circuit element.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: December 25, 2018
    Assignees: UT-BATTELLE, LLC, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventors: Petro Maksymovych, Alexander Tselev, Sergei V. Kalinin
  • Publication number: 20170099055
    Abstract: Microwave AC conductivity may be improved or tuned in a material, for example, a dielectric or semiconductor material, by manipulating domain wall morphology in the material. Domain walls may be created, erased or reconfigured to control the AC conductivity, for example, for crafting circuit elements. The density and placement of domain walls may increase or decrease the AC conductivity and may control AC conduction pathways through the material. An electric potential applied to the material's surface may create a desired pattern of domain walls to meet desired AC conductivity criteria. Incline angle of the domain walls may be modified relative to a crystallographic axis of the material to temporarily or permanently modify or gate AC conductivity of the material. For example, the AC conductivity of the material may be gated by domain wall incline angle to increase, decrease or throttle current flowing through the material for an electronic circuit element.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 6, 2017
    Inventors: Petro Maksymovych, Alexander Tselev, Sergei V. Kalinin
  • Patent number: 9610608
    Abstract: The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: April 4, 2017
    Assignee: UT-Battelle, LLC
    Inventors: Minghu Pan, Miguel Fuentes-Cabrera, Petro Maksymovych, Bobby G. Sumpter, Qing Li
  • Patent number: 9285279
    Abstract: A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: March 15, 2016
    Assignee: UT-Battelle, LLC
    Inventor: Petro Maksymovych
  • Patent number: 9267851
    Abstract: A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: February 23, 2016
    Assignee: UT-Battelle, LLC
    Inventor: Petro Maksymovych
  • Patent number: 8752211
    Abstract: An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: June 10, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Sergei V. Kalinin, Nina Balke, Albina Y. Borisevich, Stephen Jesse, Petro Maksymovych, Yunseok Kim, Evgheni Strelcov
  • Publication number: 20140064322
    Abstract: A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.
    Type: Application
    Filed: June 6, 2013
    Publication date: March 6, 2014
    Inventor: Petro Maksymovych
  • Publication number: 20140041085
    Abstract: An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Inventors: Sergei V. Kalinin, Nina Balke, Albina Y. Borisevich, Stephen Jesse, Petro Maksymovych, Yunseok Kim, Evgheni Strelcov
  • Publication number: 20140003466
    Abstract: A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements.
    Type: Application
    Filed: May 21, 2013
    Publication date: January 2, 2014
    Applicant: UT-Battelle, LLC
    Inventor: Petro Maksymovych
  • Publication number: 20130264747
    Abstract: The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 10, 2013
    Applicant: UT Battelle, LLC
    Inventors: Minghu A. Pan, Miguel Fuentes-Cabrera, Petro Maksymovych, Bobby G. Sumpter, Qing Li