Patents by Inventor Petrus Hendrikus Seesink

Petrus Hendrikus Seesink has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11081973
    Abstract: An inverter is presented. The inverter may be configured to receive an input voltage at an input node of the inverter, and to generate an output voltage at an output node of the inverter. The inverter may comprise a first transistor coupled between a supply node and the output node of the inverter. Further, the inverter may comprise a second transistor coupled between the output node of the inverter and a reference node. The input node of the inverter may be coupled to a back-gate of the first transistor and to a back-gate of the second transistor.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: August 3, 2021
    Assignee: Dialog Semiconductor B.V.
    Inventors: Marinus Wilhelmus Kruiskamp, Petrus Hendrikus Seesink
  • Patent number: 10847189
    Abstract: A voltage regulator and a method for generating a retention voltage for a RAM cell that is sufficiently high to prevent data loss, while minimizing leakage currents are presented. The A voltage regulator is used for generating at least one voltage. The regulator contains mirror circuitry, a leakage device coupled to the mirror circuitry, and a first resistive device coupled to the mirror circuitry via a first output node. The mirror circuitry mirrors a leakage current from the leakage device to the first resistive device, and the leakage current contributes to the generation of a first reference voltage at the first output node.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: November 24, 2020
    Assignee: Dialog Semiconductor B.V.
    Inventor: Petrus Hendrikus Seesink
  • Patent number: 10554218
    Abstract: A sigma-delta modulator and method for converting an input voltage such as an analog signal into a digital signal is presented. The modulator may be used as an analog-to-digital converter (ADC). The modulator has a plurality of bias transistors with at least one p-type transistor and at least one n-type transistor. The modulator receives a bias voltage, wherein each bias transistor receives the same bias voltage. This sigma-delta modulator results in reduced power consumption.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: February 4, 2020
    Assignee: Dialog Semiconductor B.V.
    Inventor: Petrus Hendrikus Seesink
  • Patent number: 10459470
    Abstract: A digital voltage regulator and a method to regulate an output voltage at an output node based on an input voltage is presented. The regulator has a driver stage with N driver slices, with N>1. Each of the N driver slices can be activated or deactivated individually. A driver slice comprises a current source to provide an output current component to the output node, if the driver slice is activated. Furthermore, the regulator has a control unit to activate a number n of the N driver slices, based on a deviation of a feedback voltage from a reference voltage, where the feedback voltage is dependent on the output voltage.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: October 29, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni, Alessandro Angeli, Petrus Hendrikus Seesink
  • Publication number: 20190296727
    Abstract: A digital active diode circuit for letting current pass in one direction and substantially blocking current in the opposite direction is presented. The circuit contains switching means comprising an array of switches, a first comparison unit coupled to the digital active diode circuit input and output. The first comparison unit updates its output if the difference between their inputs is higher than a first threshold voltage, and a second comparison unit being coupled to the digital active diode circuit output and input. The second comparison unit updates its output if the difference between its inputs is lower than a second threshold voltage. The switching means switches on or off at least one switch based on the comparisons performed by the first comparison unit and the second comparison unit and wherein the first threshold voltage is different from the second threshold voltage.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Marinus Wilhelmus Kruiskamp, Petrus Hendrikus Seesink
  • Patent number: 10425073
    Abstract: A digital active diode circuit for letting current pass in one direction and substantially blocking current in the opposite direction is presented. The circuit contains switching means comprising an array of switches, a first comparison unit coupled to the digital active diode circuit input and output. The first comparison unit updates its output if the difference between their inputs is higher than a first threshold voltage, and a second comparison unit being coupled to the digital active diode circuit output and input. The second comparison unit updates its output if the difference between its inputs is lower than a second threshold voltage. The switching means switches on or off at least one switch based on the comparisons performed by the first comparison unit and the second comparison unit and wherein the first threshold voltage is different from the second threshold voltage.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: September 24, 2019
    Assignee: Dialog Semiconductor B.V.
    Inventors: Marinus Wilhelmus Kruiskamp, Petrus Hendrikus Seesink
  • Publication number: 20180329440
    Abstract: A digital voltage regulator and a method to regulate an output voltage at an output node based on an input voltage is presented. The regulator has a driver stage with N driver slices, with N>1. Each of the N driver slices can be activated or deactivated individually. A driver slice comprises a current source to provide an output current component to the output node, if the driver slice is activated. Furthermore, the regulator has a control unit to activate a number n of the N driver slices, based on a deviation of a feedback voltage from a reference voltage, where the feedback voltage is dependent on the output voltage.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Inventors: Mihail Jefremow, Dan Ciomaga, Gennadii Tatarchenkov, Stephan Drebinger, Fabio Rigoni, Alessandro Angeli, Petrus Hendrikus Seesink
  • Patent number: 9748898
    Abstract: An oscillator circuit with an oscillator stage and a first current source arranged to drive the oscillator stage is presented. The oscillator stage has an oscillator stage input terminal, an oscillator stage output terminal, an oscillator arranged to provide an oscillating signal between the oscillator stage input terminal and the oscillator stage output terminal. The oscillator circuit has an operational amplifier with an inverting input, a non-inverting input and an operational amplifier output. The oscillator stage input terminal and the oscillator stage output terminal are coupled to the inverting input and non-inverting input. The operational amplifier output is coupled to the oscillator stage input terminal such that the oscillator stage input terminal and the oscillator stage output terminal are controlled to have a same DC voltage level.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: August 29, 2017
    Assignee: Dialog Semiconductor B.V.
    Inventor: Petrus Hendrikus Seesink
  • Publication number: 20160268971
    Abstract: An oscillator circuit with an oscillator stage and a first current source arranged to drive the oscillator stage is presented. The oscillator stage has an oscillator stage input terminal, an oscillator stage output terminal, an oscillator arranged to provide an oscillating signal between the oscillator stage input terminal and the oscillator stage output terminal. The oscillator circuit has an operational amplifier with an inverting input, a non-inverting input and an operational amplifier output. The oscillator stage input terminal and the oscillator stage output terminal are coupled to the inverting input and non-inverting input. The operational amplifier output is coupled to the oscillator stage input terminal such that the oscillator stage input terminal and the oscillator stage output terminal are controlled to have a same DC voltage level.
    Type: Application
    Filed: March 11, 2016
    Publication date: September 15, 2016
    Inventor: Petrus Hendrikus Seesink
  • Publication number: 20150162931
    Abstract: An analog-digital converter circuit is disclosed. Voltage control means is configured to control a voltage. Comparing means is configured to send a resulting comparative signal to the voltage control means. A first DAC is connected to the comparing means and to the voltage control means. Switching means connects an input means to the comparing means during a sampling phase. A second DAC is connected to the comparing means and to the voltage control means. A switching means connects input to the second DAC during a sampling phase, and connects voltage control means to DAC during a conversion phase. Switching means connects a second input to comparing means during a sampling phase.
    Type: Application
    Filed: June 19, 2014
    Publication date: June 11, 2015
    Inventors: Petrus Hendrikus Seesink, Marinus Wilhelmus Kruiskamp
  • Patent number: 9054737
    Abstract: An analog-digital converter circuit is disclosed. Voltage control means is configured to control a voltage. Comparing means is configured to send a resulting comparative signal to the voltage control means. A first DAC is connected to the comparing means and to the voltage control means. Switching means connects an input means to the comparing means during a sampling phase. A second DAC is connected to the comparing means and to the voltage control means. A switching means connects input to the second DAC during a sampling phase, and connects voltage control means to DAC during a conversion phase. Switching means connects a second input to comparing means during a sampling phase.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: June 9, 2015
    Assignee: Dialog Semiconductor B.V.
    Inventors: Petrus Hendrikus Seesink, Marinus Wilhelmus Kruiskamp