Patents by Inventor Petteri Litmanen

Petteri Litmanen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10461717
    Abstract: In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 29, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
  • Publication number: 20190149120
    Abstract: In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
  • Patent number: 10181834
    Abstract: In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: January 15, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
  • Publication number: 20170338791
    Abstract: In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.
    Type: Application
    Filed: August 8, 2017
    Publication date: November 23, 2017
    Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
  • Patent number: 9735753
    Abstract: A magnetically-coupled structure is integrated with an integrated circuit in back end-of-line (BEOL) digital CMOS fabrication processes. A differential primary (or secondary) coil is formed by patterning a thick copper (Cu) metal layer, and a single-ended secondary (or primary) coil is formed by patterning a thick aluminum (Al) top metal bonding layer. Crossovers and/or cross-unders are formed using thin metal layers. One embodiment provides a stacked balun with a differential primary input winding defined in the copper layer, directly underneath a single-ended spiral winding defined in the aluminum layer. The spiral forms the single-ended secondary output of the balun and is rotated by 90° to prevent metal shorting for its cross-under connections. Another embodiment provides a transformer with one differential primary (or secondary) coil defined in the copper layer and another differential secondary (or primary) coil defined in the aluminum layer and adding a center tap.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: August 15, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
  • Publication number: 20160142036
    Abstract: A magnetically-coupled structure is integrated with an integrated circuit in back end-of-line (BEOL) digital CMOS fabrication processes. A differential primary (or secondary) coil is formed by patterning a thick copper (Cu) metal layer, and a single-ended secondary (or primary) coil is formed by patterning a thick aluminum (Al) top metal bonding layer. Crossovers and/or cross-unders are formed using thin metal layers. One embodiment provides a stacked balun with a differential primary input winding defined in the copper layer, directly underneath a single-ended spiral winding defined in the aluminum layer. The spiral forms the single-ended secondary output of the balun and is rotated by 90° to prevent metal shorting for its cross-under connections. Another embodiment provides a transformer with one differential primary (or secondary) coil defined in the copper layer and another differential secondary (or primary) coil defined in the aluminum layer and adding a center tap.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 19, 2016
    Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
  • Patent number: 9276056
    Abstract: A magnetically-coupled structure is integrated with an integrated circuit in back end-of-line (BEOL) digital CMOS fabrication processes. A differential primary (or secondary) coil is formed by patterning a thick copper (Cu) metal layer, and a single-ended secondary (or primary) coil is formed by patterning a thick aluminum (Al) top metal bonding layer. Crossovers and/or cross-unders are formed using thin metal layers. One embodiment provides a stacked balun with a differential primary input winding defined in the copper layer, directly underneath a single-ended spiral winding defined in the aluminum layer. The spiral forms the single-ended secondary output of the balun and is rotated by 90° to prevent metal shorting for its cross-under connections. Another embodiment provides a transformer with one differential primary (or secondary) coil defined in the copper layer and another differential secondary (or primary) coil defined in the aluminum layer and adding a center tap.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: March 1, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
  • Publication number: 20120056297
    Abstract: A magnetically-coupled structure is integrated with an integrated circuit in back end-of-line (BEOL) digital CMOS fabrication processes. A differential primary (or secondary) coil is formed by patterning a thick copper (Cu) metal layer, and a single-ended secondary (or primary) coil is formed by patterning a thick aluminum (Al) top metal bonding layer. Crossovers and/or cross-unders are formed using thin metal layers. One embodiment provides a stacked balun with a differential primary input winding defined in the copper layer, directly underneath a single-ended spiral winding defined in the aluminum layer. The spiral forms the single-ended secondary output of the balun and is rotated by 90° to prevent metal shorting for its cross-under connections. Another embodiment provides a transformer with one differential primary (or secondary) coil defined in the copper layer and another differential secondary (or primary) coil defined in the aluminum layer and adding a center tap.
    Type: Application
    Filed: May 27, 2011
    Publication date: March 8, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
  • Publication number: 20070129029
    Abstract: A novel and useful load compensation circuit and associated pre-power amplifier constructed therefrom. The load compensation circuit functions to maintain a nearly constant output impedance of the pre-power amplifier by use of a switch matrix comprising a plurality of transistors. The switch matrix is placed in parallel with the output of the pre-power amplifier (PPA). Transistors are turned on or off within the load compensation switch matrix so as to maintain a nearly constant output impedance of the PPA throughout the entire modulation range. At maximum PPA output power, all transistors in the load compensation switch matrix are turned off thereby minimizing the extra output loading and reducing the overall power output. As output power decreases, additional numbers of transistors in the load compensation switch matrix are turned on so as to maintain a constant output impedance of the PPA.
    Type: Application
    Filed: December 1, 2005
    Publication date: June 7, 2007
    Inventor: Petteri Litmanen
  • Publication number: 20070129030
    Abstract: A novel digital attenuator circuit and associated pre-power amplifier (PPA) that substantially increases the dynamic range of the amplifier. Increased dynamic range is achieved by placing a digital current attenuator circuit at the output of the pre-power amplifier so that the minimum possible current output of the transistor switch array of the PPA can be further attenuated. The attenuator functions to split the current between the load and the power supply VDD (i.e. AC ground) based on device ratio that is controlled digitally via an input power control word. The digital attenuator is constructed as a segmented digitally controlled matrix or cell array comprising at least a pass and bypass matrix or array. The pass matrix controls the amount of current output from the PPA while the bypass matrix controls the amount of current shorted to the AC ground (i.e. power supply). By varying the number of transistors on or off in each matrix, the power output of the PPA can be easily and accurately controlled.
    Type: Application
    Filed: December 6, 2005
    Publication date: June 7, 2007
    Inventors: Petteri Litmanen, Heng-Chih Lin
  • Patent number: 7062244
    Abstract: A speed-up mode control system is operative to generate a speed-up mode signal based on a gain control signal from associated digital circuitry. The speed-up mode signal controls electronics associated with one or more amplifiers to facilitate settling time of an output signal of the amplifier(s) that occurs when the gain of the amplifier changes. The gain control signal also can be delayed to provide a delayed version of the gain control signal for controlling gain of the amplifier(s).
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: June 13, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Ranjit Gharpurey, Naveen K. Yanduru, Petteri Litmanen, Francesco Dantoni
  • Publication number: 20030125000
    Abstract: A speed-up mode control system is operative to generate a speed-up mode signal based on a gain control signal from associated digital circuitry. The speed-up mode signal controls electronics associated with one or more amplifiers to facilitate settling time of an output signal of the amplifier(s) that occurs when the gain of the amplifier changes. The gain control signal also can be delayed to provide a delayed version of the gain control signal for controlling gain of the amplifier(s).
    Type: Application
    Filed: December 28, 2001
    Publication date: July 3, 2003
    Inventors: Ranjit Gharpurey, Naveen K. Yanduru, Petteri Litmanen, Francesco Dantoni