Patents by Inventor Pey-Jiun Ko

Pey-Jiun Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240407673
    Abstract: A sensor cable support device is described. The sensor cable support device can be used to implemented in wearable monitoring device to support a proximal portion of a sensor cable and electrically connect the proximal portion with a sensing circuitry. A distal portion of the sensor cable is insertable into a person's skin. The sensor cable support device may include a rigid body defining a pair of openings, a set legs attached to the rigid body, and a pair of electrical traces extending between the pair of openings and distal ends of a pair of legs of the set of legs. The pair of openings may be sized and configured to receive a pair of pucks that mechanically retain a sensor cable to the body and electrically connect the sensor cable with the electrical traces.
    Type: Application
    Filed: August 16, 2024
    Publication date: December 12, 2024
    Inventors: Pey-Jiun Ko, Arthur Lin, Timothy Stowe
  • Patent number: 12150784
    Abstract: A body-mountable monitoring device includes a sensing device, a carrier body removably coupled to the sensing device, and an adhesive sheet bonded to the carrier body and configured to couple the carrier body to a user's skin, where the carrier body surrounds sidewalls of the sensing device such that at least a top surface is exposed when the sensing device is coupled to the carrier body.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: November 26, 2024
    Assignee: Verily Life Sciences LLC
    Inventors: Jonathan Grossman, Pey-Jiun Ko, David Lari, Jon Echt, Xianyan Wang, Arthur Lin
  • Patent number: 12085583
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: September 10, 2024
    Assignee: Labrador Diagnostics LLC
    Inventors: Elizabeth A. Holmes, Michael Chen, Pey-Jiun Ko
  • Patent number: 12050253
    Abstract: A test fixture (20) for testing continuity in at least one electrode of a neuromodulation device. The test fixture may comprise a substrate (22), at least one electrically conductive pad (24a) disposed on the substrate for reducing pressure applied to the at least one electrode when the electrically conductive pad makes contact with an exposed surface of the electrode, and a wire (26a) extending from the at least one electrically conductive pad. The pad may be formed of a non-abrasive material, such as conductive foam or smooth metal. The substrate may be a probe formed with a number of slots for holding pads and routing wires, a mandrel with openings for holding pads and routing wires, and a flexible circuit with exposed smooth metal surfaces. The test fixture may be suitable for testing cuff-like and paddle-like devices.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: July 30, 2024
    Assignee: GALVANI BIOELECTRONICS LIMITED
    Inventors: Ellen Kaplan, Cindy Au, Pey-Jiun Ko
  • Patent number: 11832938
    Abstract: A sensor cable support device is described. The sensor cable support device can be used to implemented in wearable monitoring device to support a proximal portion of a sensor cable and electrically connect the proximal portion with a sensing circuitry. A distal portion of the sensor cable is insertable into a person's skin. The sensor cable support device may include a rigid body defining a pair of openings, a set legs attached to the rigid body, and a pair of electrical traces extending between the pair of openings and distal ends of a pair of legs of the set of legs. The pair of openings may be sized and configured to receive a pair of pucks that mechanically retain a sensor cable to the body and electrically connect the sensor cable with the electrical traces.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: December 5, 2023
    Assignee: DexCom, Inc.
    Inventors: Pey-Jiun Ko, Arthur Lin, Timothy Stowe
  • Publication number: 20230346266
    Abstract: Examples of invasive biosensor alignment and retention features and methods are described. One example biosensor includes a housing comprising: a first surface defining a first opening, and a second surface opposite the first surface, the second surface defining a second opening, the first and second openings defining a substantially unobstructed pathway through the housing; a biosensor wire partially disposed within the housing and having an exterior portion extending through the first opening; a hollow insertion needle positioned within the pathway and extending through the first opening, the hollow insertion needle at least partially encircling the biosensor wire; and a biosensor retention feature collapsible against the first surface of the housing, the biosensor retention feature encircling and contacting the hollow insertion needle.
    Type: Application
    Filed: June 26, 2023
    Publication date: November 2, 2023
    Inventors: Arthur Lin, Xianyan Wang, Pey-Jiun Ko
  • Publication number: 20230346268
    Abstract: A sensor cable support device is described. The sensor cable support device can be used to implemented in wearable monitoring device to support a proximal portion of a sensor cable and electrically connect the proximal portion with a sensing circuitry. A distal portion of the sensor cable is insertable into a person's skin. The sensor cable support device may include a rigid body defining a pair of openings, a set legs attached to the rigid body, and a pair of electrical traces extending between the pair of openings and distal ends of a pair of legs of the set of legs. The pair of openings may be sized and configured to receive a pair of pucks that mechanically retain a sensor cable to the body and electrically connect the sensor cable with the electrical traces.
    Type: Application
    Filed: June 26, 2023
    Publication date: November 2, 2023
    Inventors: Pey-Jiun Ko, Arthur Lin, Timothy Stowe
  • Patent number: 11803276
    Abstract: An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: October 31, 2023
    Assignee: Apple Inc.
    Inventors: Dhaval C. Patel, Eugene C. Cheung, Pey-Jiun Ko, Po-Jui Chen, Robert W. Rumford, Steve L. Terry, Wei Lin, Xiaofan Niu, Xiaoqi Zhou, Yi Gu, Yindar Chuo, Rasmi R. Das, Steven M. Scardato, Se Hyun Ahn, Victor H. Yin, Wookyung Bae, Christopher L. Boitnott, Chun-Hao Tung, Mookyung Son, Sunggu Kang, Nathan K. Gupta, John Z. Zhong
  • Patent number: 11717193
    Abstract: Examples of invasive biosensor alignment and retention features and methods are described. One example biosensor includes a housing comprising: a first surface defining a first opening, and a second surface opposite the first surface, the second surface defining a second opening, the first and second openings defining a substantially unobstructed pathway through the housing; a biosensor wire partially disposed within the housing and having an exterior portion extending through the first opening; a hollow insertion needle positioned within the pathway and extending through the first opening, the hollow insertion needle at least partially encircling the biosensor wire; and a biosensor retention feature collapsible against the first surface of the housing, the biosensor retention feature encircling and contacting the hollow insertion needle.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: August 8, 2023
    Assignee: DexCom, Inc.
    Inventors: Arthur Lin, Xianyan Wang, Pey-Jiun Ko
  • Publication number: 20220409888
    Abstract: In embodiments a neural interface comprising at least one C-ring portion can be used to apply a pressure in a range of 0 mmHg to 30 mmHg to a target tissue arranged within the C-ring portion and comprising at least one electrode arranged on the at least one C-ring portion.
    Type: Application
    Filed: November 27, 2020
    Publication date: December 29, 2022
    Inventors: Sebastien Ouchouche, David Karl Lee Peterson, Eric Irwin, Robert W. Coatney, Benjamin Yaffe, Morten Hansen, Faisal Zaidi, Thomas Burge, Pey-Jiun Ko, Cindy Au, Paul Matteucci, Mark Gregory Palmer, Gerald Edwin Hunsberger
  • Publication number: 20220273195
    Abstract: A sensor cable support device is described. The sensor cable support device can be used to implemented in wearable monitoring device to support a proximal portion of a sensor cable and electrically connect the proximal portion with a sensing circuitry. A distal portion of the sensor cable is insertable into a person's skin. The sensor cable support device may include a rigid body defining a pair of openings, a set legs attached to the rigid body, and a pair of electrical traces extending between the pair of openings and distal ends of a pair of legs of the set of legs. The pair of openings may be sized and configured to receive a pair of pucks that mechanically retain a sensor cable to the body and electrically connect the sensor cable with the electrical traces.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Inventors: Pey-Jiun Ko, Arthur Lin, Timothy Stowe
  • Publication number: 20220206083
    Abstract: A test fixture (20) for testing continuity in at least one electrode of a neuromodulation device. The test fixture may comprise a substrate (22), at least one electrically conductive pad (24a) disposed on the substrate for reducing pressure applied to the at least one electrode when the electrically conductive pad makes contact with an exposed surface of the electrode, and a wire (26a) extending from the at least one electrically conductive pad. The pad may be formed of a non-abrasive material, such as conductive foam or smooth metal. The substrate may be a probe formed with a number of slots for holding pads and routing wires, a mandrel with openings for holding pads and routing wires, and a flexible circuit with exposed smooth metal surfaces. The test fixture may be suitable for testing cuff-like and paddle-like devices.
    Type: Application
    Filed: May 1, 2020
    Publication date: June 30, 2022
    Inventors: Ellen KAPLAN, Cindy AU, Pey-Jiun KO
  • Patent number: 11363972
    Abstract: A sensor cable support device is described. The sensor cable support device can be used to implemented in wearable monitoring device to support a proximal portion of a sensor cable and electrically connect the proximal portion with a sensing circuitry. A distal portion of the sensor cable is insertable into a person's skin. The sensor cable support device may include a rigid body defining a pair of openings, a set legs attached to the rigid body, and a pair of electrical traces extending between the pair of openings and distal ends of a pair of legs of the set of legs. The pair of openings may be sized and configured to receive a pair of pucks that mechanically retain a sensor cable to the body and electrically connect the sensor cable with the electrical traces.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: June 21, 2022
    Assignee: DexCom, Inc.
    Inventors: Pey-Jiun Ko, Arthur Lin, Timothy Stowe
  • Publication number: 20210382077
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Application
    Filed: May 13, 2021
    Publication date: December 9, 2021
    Inventors: Elizabeth A. Holmes, Michael Chen, Pey-Jiun Ko
  • Publication number: 20210290163
    Abstract: Examples of invasive biosensor alignment and retention features and methods are described. One example biosensor includes a housing comprising: a first surface defining a first opening, and a second surface opposite the first surface, the second surface defining a second opening, the first and second openings defining a substantially unobstructed pathway through the housing; a biosensor wire partially disposed within the housing and having an exterior portion extending through the first opening; a hollow insertion needle positioned within the pathway and extending through the first opening, the hollow insertion needle at least partially encircling the biosensor wire; and a biosensor retention feature collapsible against the first surface of the housing, the biosensor retention feature encircling and contacting the hollow insertion needle.
    Type: Application
    Filed: February 2, 2021
    Publication date: September 23, 2021
    Inventors: Arthur Lin, Xianyan Wang, Pey-Jiun Ko
  • Publication number: 20210186393
    Abstract: Bodily fluid sample collection systems, devices, and method are provided. The device may comprise a first portion comprising at least a sample collection channel configured to draw the fluid sample into the sample collection channel via a first type of motive force. The sample collection device may include a second portion comprising a sample container for receiving the bodily fluid sample collected in the sample collection channel, the sample container operably engagable to be in fluid communication with the collection channel, whereupon when fluid communication is established, the container provides a second motive force different from the first motive force to move a majority of the bodily fluid sample from the channel into the container.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 24, 2021
    Inventors: Patricia McHale, Michael Chen, Pey-Jiun Ko, Tammy Burd, Adrit Lath, Elizabeth A. Holmes, Joy Roy
  • Publication number: 20210145337
    Abstract: Bodily fluid sample collection systems, devices, and method are provided. The device may comprise a first portion comprising at least a sample collection channel configured to draw the fluid sample into the sample collection channel via a first type of motive force. The sample collection device may include a second portion comprising a sample container for receiving the bodily fluid sample collected in the sample collection channel, the sample container operably engagable to be in fluid communication with the collection channel, whereupon when fluid communication is established, the container provides a second motive force different from the first motive force to move a majority of the bodily fluid sample from the channel into the container.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 20, 2021
    Inventors: Elizabeth A. Holmes, Michael Chen, Pey-Jiun Ko, Tammy Burd, Adrit Lath, Patricia McHale
  • Patent number: 11009516
    Abstract: Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: May 18, 2021
    Assignee: Labrador Diagnostics LLC
    Inventors: Elizabeth A. Holmes, Michael Chen, Pey-Jiun Ko
  • Publication number: 20210085222
    Abstract: A sensor cable support device is described. The sensor cable support device can be used to implemented in wearable monitoring device to support a proximal portion of a sensor cable and electrically connect the proximal portion with a sensing circuitry. A distal portion of the sensor cable is insertable into a person's skin. The sensor cable support device may include a rigid body defining a pair of openings, a set legs attached to the rigid body, and a pair of electrical traces extending between the pair of openings and distal ends of a pair of legs of the set of legs. The pair of openings may be sized and configured to receive a pair of pucks that mechanically retain a sensor cable to the body and electrically connect the sensor cable with the electrical traces.
    Type: Application
    Filed: December 4, 2020
    Publication date: March 25, 2021
    Inventors: Pey-Jiun Ko, Arthur Lin, Timothy Stowe
  • Publication number: 20210089168
    Abstract: An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.
    Type: Application
    Filed: December 9, 2020
    Publication date: March 25, 2021
    Inventors: Dhaval C. Patel, Eugene C. Cheung, Pey-Jiun Ko, Po-Jui Chen, Robert W. Rumford, Steve L. Terry, Wei Lin, Xiaofan Niu, Xiaoqi Zhou, Yi Gu, Yindar Chuo, Rasmi R. Das, Steven M. Scardato, Se Hyun Ahn, Victor H. Yin, Wookyung Bae, Christopher L. Boitnott, Chun-Hao Tung, Mookyung Son, Sunggu Kang, Nathan K. Gupta, John Z. Zhong