Patents by Inventor Phil C. Paone

Phil C. Paone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8492207
    Abstract: A method and an eFuse circuit for implementing with enhanced eFuse blow operation without requiring a separate high current and high voltage supply to blow the eFuse, and a design structure on which the subject circuit resides are provided. The eFuse circuit includes an eFuse connected to a field effect transistor (FET) operatively controlled during a sense mode and a blow mode for sensing and blowing the eFuse. The eFuse circuit is placed over an independently voltage controlled silicon region. During a sense mode, the independently voltage controlled silicon region is grounded providing an increased threshold voltage of the FET. During a blow mode, the independently voltage controlled silicon region is charged to a voltage supply potential. The threshold voltage of the FET is reduced by the charged independently voltage controlled silicon region for providing enhanced FET blow function.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8492220
    Abstract: Vertically stacked Field Effect Transistors (FETs) are created on a vertical structure formed on a semiconductor substrate where a first FET and a second FET are controllable independently. A bipolar junction transistor is connected between and in series with the first FET and the second FET, the bipolar junction transistor may be controllable independently of the first and second FET.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Kelly L. Williams
  • Publication number: 20130146992
    Abstract: A semiconductor device includes a source extending into a surface of a substrate, a drain extending into the surface of the substrate, and an embedded gate in the substrate extending from the source to the drain.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8456187
    Abstract: A method and circuits for implementing a temporary disable function at indeterminate times of circuitry to be protected in a semiconductor chip, such as in an integrated circuit or a system on a chip (SOC) by modulating threshold voltage shifts of a timing sensitive circuit, and a design structure on which the subject circuit resides are provided. The timing sensitive circuit is designed to be sensitive to threshold-voltage shifts and is placed over an independently voltage controlled silicon region. Upon startup, the independently voltage controlled silicon region is grounded, and then is left floating. Each time a hack attempt or predefined functional oddity is detected, charge is applied onto the independently voltage controlled silicon region. After a defined charge has accumulated, the device threshold voltages in the timing sensitive circuit above the independently voltage controlled silicon region are modulated causing the timing-sensitive circuit to fail.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: June 4, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8435851
    Abstract: A method and structures are provided for implementing metal via gate node high performance stacked vertical transistors in a back end of line (BEOL) on a semiconductor System on Chip (SoC). The high performance stacked vertical transistors include a pair of stacked vertical field effect transistors (FETs) formed by polycrystalline depositions in a stack between planes of a respective global signal routing wire. A channel length of each of the stacked vertical FETs is delineated by the polycrystalline depositions with sequential source deposition, channel deposition and drain deposition; and a wire via defines the gate node.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8395186
    Abstract: A method and structures are provided for implementing vertical transistors utilizing wire vias as gate nodes. The vertical transistors are high performance transistors fabricated up in the stack between the planes of the global signal routing wire, for example, used as vertical signal repeater transistors. An existing via or a supplemental vertical via between wire planes provides both an electrical connection and the gate node of the novel vertical transistor.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: March 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8384414
    Abstract: A method and circuits for implementing a hacking detection and block function at indeterminate times, and a design structure on which the subject circuit resides are provided. A circuit includes an antenna wrapped around a dynamic bus inside circuitry to be protected. The antenna together with the dynamic bus node is designed so an average bus access activates a field effect transistor (FET) that is connected to a capacitor. The FET drains the capacitor in a specified number of activations by the antenna. The capacitor has a leakage path to a voltage supply rail VDD that charges the capacitor back high after a time, such as ten to one hundred cycles, of the dynamic bus being quiet. The capacitor provides a hacking detect signal for temporarily blocking operation of the circuitry to be protected responsive to determining that the dynamic bus is more active than functionally expected.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20130043544
    Abstract: A semiconductor chip has a FinFET structure with three independently controllable FETs on a single fin. The three FETs are connected in parallel so that current will flow between a common source and a common drain if one or more of the three independently controllable FETs is turned on. The three independently controllable FETs may be used in logic gates.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120268160
    Abstract: A method and circuits for implementing a temporary disable function at indeterminate times of circuitry to be protected in a semiconductor chip, such as in an integrated circuit or a system on a chip (SOC) by modulating threshold voltage shifts of a timing sensitive circuit, and a design structure on which the subject circuit resides are provided. The timing sensitive circuit is designed to be sensitive to threshold-voltage shifts and is placed over an independently voltage controlled silicon region. Upon startup, the independently voltage controlled silicon region is grounded, and then is left floating. Each time a hack attempt or predefined functional oddity is detected, charge is applied onto the independently voltage controlled silicon region. After a defined charge has accumulated, the device threshold voltages in the timing sensitive circuit above the independently voltage controlled silicon region are modulated causing the timing-sensitive circuit to fail.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120268195
    Abstract: A method and an eFuse circuit for implementing with enhanced eFuse blow operation without requiring a separate high current and high voltage supply to blow the eFuse, and a design structure on which the subject circuit resides are provided. The eFuse circuit includes an eFuse connected to a field effect transistor (FET) operatively controlled during a sense mode and a blow mode for sensing and blowing the eFuse. The eFuse circuit is placed over an independently voltage controlled silicon region. During a sense mode, the independently voltage controlled silicon region is grounded providing an increased threshold voltage of the FET. During a blow mode, the independently voltage controlled silicon region is charged to a voltage supply potential. The threshold voltage of the FET is reduced by the charged independently voltage controlled silicon region for providing enhanced FET blow function.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120267752
    Abstract: A semiconductor chip has an independently voltage controlled silicon region that is a circuit element useful for controlling capacitor values of eDRAM trench capacitors and threshold voltages of field effect transistors overlying the independently voltage controlled silicon region. A bottom, or floor, of the independently voltage controlled silicon region is a deep implant of opposite doping to a doping of a substrate of the independently voltage controlled silicon region. A top, or ceiling, of the independently voltage controlled silicon region is a buried oxide implant in the substrate. Sides of the independently voltage controlled silicon region are deep trench isolation. Voltage of the independently voltage controlled silicon region is applied through a contact structure formed through the buried oxide.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120267697
    Abstract: A semiconductor chip has an embedded dynamic random access memory (eDRAM) in an independently voltage controlled silicon region that is a circuit element useful for controlling capacitor values of eDRAM deep trench capacitors and threshold voltages of field effect transistors overlying the independently voltage controlled silicon region. Retention time and performance of the eDRAM is controlled by applying a voltage to the independently voltage controlled silicon region.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120216301
    Abstract: A method and circuits for implementing a hacking detection and block function at indeterminate times, and a design structure on which the subject circuit resides are provided. A circuit includes an antenna wrapped around a dynamic bus inside circuitry to be protected. The antenna together with the dynamic bus node is designed so an average bus access activates a field effect transistor (FET) that is connected to a capacitor. The FET drains the capacitor in a specified number of activations by the antenna. The capacitor has a leakage path to a voltage supply rail VDD that charges the capacitor back high after a time, such as ten to one hundred cycles, of the dynamic bus being quiet. The capacitor provides a hacking detect signal for temporarily blocking operation of the circuitry to be protected responsive to determining that the dynamic bus is more active than functionally expected.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120175624
    Abstract: A method and structures are provided for implementing vertical transistors utilizing wire vias as gate nodes. The vertical transistors are high performance transistors fabricated up in the stack between the planes of the global signal routing wire, for example, used as vertical signal repeater transistors. An existing via or a supplemental vertical via between wire planes provides both an electrical connection and the gate node of the novel vertical transistor.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120175626
    Abstract: A method and structures are provided for implementing metal via gate node high performance stacked vertical transistors in a back end of line (BEOL) on a semiconductor System on Chip (SoC). The high performance stacked vertical transistors include a pair of stacked vertical field effect transistors (FETs) formed by polycrystalline depositions in a stack between planes of a respective global signal routing wire. A channel length of each of the stacked vertical FETs is delineated by the polycrystalline depositions with sequential source deposition, channel deposition and drain deposition; and a wire via defines the gate node.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120126330
    Abstract: A semiconductor chip has self aligned (where a gate electrode and associated spacers define the source/drain implant with respect to the gate electrode) Field Effect Transistors (FETs) in a back end of the line (BEOL) portion of the semiconductor chip. The FETs are used to make buffer circuits in the BEOL to improve delay and signal integrity of long signal paths on the semiconductor chip.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20120032274
    Abstract: Vertically stacked Field Effect Transistors (FETs) are created on a vertical structure formed on a semiconductor substrate where a first FET and a second FET are controllable independently. A bipolar junction transistor is connected between and in series with the first FET and the second FET, the bipolar junction transistor may be controllable independently of the first and second FET.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Kelly L. Williams
  • Publication number: 20110298052
    Abstract: A vertical structure is formed upon a semiconductor substrate. The vertical structure comprises four dielectric layers parallel to a top surface of the semiconductor substrate and three conducting layers, one conducting layer between each vertically adjacent dielectric layer. A first FET (field effect transistor) and a third FET are arranged parallel to the top surface of the semiconductor and a second FET is arranged orthogonal to the top surface of the semiconductor. All three FETs are independently controllable. The first conducting layer is a gate electrode of the first FET; the second conducting layer is a gate electrode of the second FET, and the third conducting layer is the gate electrode of the third FET.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Kelly L. Williams
  • Patent number: 7865859
    Abstract: A method and apparatus implement adaptive power supply (APS) system voltage level activation eliminating the use of electronic Fuses (eFuses), and a design structure on which the subject circuit resides are provided. A primary chip includes an adaptive power supply (APS). A secondary chip circuit includes at least one pair of hard-wired APS setting connections. Each hard-wired APS setting connection is defined by a selected one of a voltage supply connection and a ground potential connection. A respective inverter couples a control signal from each of the hard-wired APS setting connections to a power communication bus connected to the APS on the primary chip.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Phil C. Paone, David Paul Paulsen, John Edward Sheets, II, Gregory John Uhlmann
  • Patent number: 7550789
    Abstract: Techniques and systems whereby operation of and/or access to particular features of an electronic device may be controlled after the device has left the control of the manufacturer are provided. The operation and/or access may be provided based on values stored in non-volatile storage elements, such as electrically programmable fused (eFUSES).
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 23, 2009
    Assignee: International Business Machines Corporation
    Inventors: Anthony R. Bonaccio, Karl R. Erickson, John A. Fifield, Chandrasekharan Kothandaraman, Phil C. Paone, William R. Tonti