Patents by Inventor Phil Foshee

Phil Foshee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8036744
    Abstract: A cardiac rhythm management device predicts defibrillation thresholds without any need to apply defibrillation shocks or subjecting the patient to fibrillation. Intravascular defibrillation electrodes are implanted in a heart. By applying a small test energy, an electric field near one of the defibrillation electrodes is determined by measuring a voltage at a sensing electrode offset from the defibrillation electrode by a known distance. A desired minimum value of electric field at the heart periphery is established. A distance between a defibrillation electrodes and the heart periphery is measured, either fluoroscopically or by measuring a voltage at an electrode at or near the heart periphery. Using the measured electric field and the measured distance to the periphery of the heart, the defibrillation energy needed to obtain the desired electric field at the heart periphery is estimated. In an example, the device also includes a defibrillation shock circuit and a stimulation circuit.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: October 11, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Richard Milon Dujmovic, Jr., Phil Foshee, Richard Fogoros, Joseph M. Smith, Douglas R. Daum, Weimin Sun
  • Publication number: 20100087884
    Abstract: A cardiac rhythm management device predicts defibrillation thresholds without any need to apply defibrillation shocks or subjecting the patient to fibrillation. Intravascular defibrillation electrodes are implanted in a heart. By applying a small test energy, an electric field near one of the defibrillation electrodes is determined by measuring a voltage at a sensing electrode offset from the defibrillation electrode by a known distance. A desired minimum value of electric field at the heart periphery is established. A distance between a defibrillation electrodes and the heart periphery is measured, either fluoroscopically or by measuring a voltage at an electrode at or near the heart periphery. Using the measured electric field and the measured distance to the periphery of the heart, the defibrillation energy needed to obtain the desired electric field at the heart periphery is estimated. In an example, the device also includes a defibrillation shock circuit and a stimulation circuit.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 8, 2010
    Inventors: Richard Milon Dujmovic, JR., Phil Foshee, Richard Fogoros, Joseph M. Smith, Douglas R. Daum, Weimin Sun
  • Patent number: 7643877
    Abstract: A cardiac rhythm management device predicts defibrillation thresholds without any need to apply defibrillation shocks or subjecting the patient to fibrillation. Intravascular defibrillation electrodes are implanted in a heart. By applying a small test energy, an electric field near one of the defibrillation electrodes is determined by measuring a voltage at a sensing electrode offset from the defibrillation electrode by a known distance. A desired minimum value of electric field at the heart periphery is established. A distance between a defibrillation electrodes and the heart periphery is measured, either fluoroscopically or by measuring a voltage at an electrode at or near the heart periphery. Using the measured electric field and the measured distance to the periphery of the heart, the defibrillation energy needed to obtain the desired electric field at the heart periphery is estimated. In an example, the device also includes a defibrillation shock circuit and a stimulation circuit.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: January 5, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Richard Milon Dujmovic, Jr., Phil Foshee, Richard Fogoros, Joseph M. Smith, Douglas R. Daum, Weimin Sun
  • Publication number: 20080243201
    Abstract: A combination pacer/defibrillator is tailored for bradycardia patients. In one example, its shock-delivery specificity exceeds its sensitivity to shockable ventricular tachyarrhythmias. In another example, its specificity exceeds 95%, or 99%, or even 99.5%. Sensitivity is programmed to a high desired sensitivity value, but only if it can be done without decreasing the specificity below the desired specificity threshold value. This can be conceptualized as “avoiding at all costs” delivering false shocks, even at the expense of failing to deliver a shock to a treatable ventricular tachyarrhythmia. Specificity enhancements include, among other things, inhibiting shock delivery when the patient is breathing or not supine, using multiple channels or a high rate VT/VF detection threshold.
    Type: Application
    Filed: June 9, 2008
    Publication date: October 2, 2008
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Bocek, Richard M. Dujmovic, Phil Foshee, Harley White, Jaeho Kim, Anthony Harrington, Richard S. Sanders, Douglas R. Daum, Paul De Coriolis, Joseph Smith, Richard Fogoros
  • Patent number: 7386344
    Abstract: A combination pacer/defibrillator is tailored for bradycardia patients. In one example, its shock-delivery specificity exceeds its sensitivity to shockable ventricular tachyarrhythmias. In another example, its specificity exceeds 95%, or 99%, or even 99.5%. Sensitivity is programmed to a high desired sensitivity value, but only if it can be done without decreasing the specificity below the desired specificity threshold value. This can be conceptualized as “avoiding at all costs” delivering false shocks, even at the expense of failing to deliver a shock to a treatable ventricular tachyarrhythmia. Specificity enhancements include, among other things, inhibiting shock delivery when the patient is breathing or not supine, using multiple channels or a high rate VT/VF detection threshold.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: June 10, 2008
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Bocek, Richard Milon Dujmovic, Jr., Phil Foshee, Harley White, Jaeho Kim, Anthony Harrington, Richard S. Sanders, Douglas R. Daum, Paul De Coriolis, Joseph Smith, Richard Fogoros
  • Publication number: 20060036288
    Abstract: This document discusses, among other things, a combination pacer/defibrillator that is tailored for bradycardia patients. In one example, its shock-delivery specificity exceeds its sensitivity to shockable ventricular tachyarrhythmias. In another example, its specificity exceeds 95%, or 99%, or even 99.5%. Sensitivity is programmed to a high desired sensitivity value, but only if it can be done without decreasing the specificity below the desired specificity threshold value. This can be conceptualized as “avoiding at all costs” delivering false shocks, even at the expense of failing to deliver a shock to a treatable ventricular tachyarrhythmia. Specificity enhancements include, among other things, inhibiting shock delivery when the patient is breathing or not supine, using multiple channels or a high rate VT/VF detection threshold.
    Type: Application
    Filed: August 18, 2004
    Publication date: February 16, 2006
    Inventors: Joseph Bocek, Richard Dujmovic, Phil Foshee, Harley White, Jaeho Kim, Anthony Harrington, Richard Sanders, Douglas Daum, Paul De Coriolis, Joseph Smith, Richard Fogoros
  • Publication number: 20050251215
    Abstract: A cardiac rhythm management device predicts defibrillation thresholds without any need to apply defibrillation shocks or subjecting the patient to fibrillation. Intravascular defibrillation electrodes are implanted in a heart. By applying a small test energy, an electric field near one of the defibrillation electrodes is determined by measuring a voltage at a sensing electrode offset from the defibrillation electrode by a known distance. A desired minimum value of electric field at the heart periphery is established. A distance between a defibrillation electrodes and the heart periphery is measured, either fluoroscopically or by measuring a voltage at an electrode at or near the heart periphery. Using the measured electric field and the measured distance to the periphery of the heart, the defibrillation energy needed to obtain the desired electric field at the heart periphery is estimated. In an example, the device also includes a defibrillation shock circuit and a stimulation circuit.
    Type: Application
    Filed: February 18, 2005
    Publication date: November 10, 2005
    Inventors: Richard Dujmovic, Phil Foshee, Richard Fogoros, Joseph Smith, Douglas Daum, Weimin Sun