Patents by Inventor Philip A. Premysler
Philip A. Premysler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250093661Abstract: Methods and systems for depth-based foveated rendering in a display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of the display system. A fixation point can be determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual object(s) to present is obtained, with the location information including three-dimensional position(s) of the virtual object(s). A resolution of the virtual object(s) can be adjusted based on a proximity of the location(s) of the virtual object(s) to the fixation point. The virtual object(s) are presented by the display system according to the adjusted resolution(s).Type: ApplicationFiled: November 25, 2024Publication date: March 20, 2025Inventors: Ivan Li Chuen YEOH, Lionel Ernest EDWIN, Nicole Elizabeth SAMEC, Nastasja U. ROBAINA, Vaibhav MATHUR, Timothy Mark DALRYMPLE, Jason SCHAEFER, Clinton CARLISLE, Hui-Chuan CHENG, Chulwoo OH, Philip PREMYSLER, Xiaoyang ZHANG, Adam C. CARLSON
-
Patent number: 12189128Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.Type: GrantFiled: April 7, 2023Date of Patent: January 7, 2025Assignee: Magic Leap, Inc.Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Nicole Elizabeth Samec, Nastasja U. Robaina, Vaibhav Mathur, Timothy Mark Dalrymple, Jason Schaefer, Clinton Carlisle, Hui-Chuan Cheng, Chulwoo Oh, Philip Premysler, Xiaoyang Zhang, Adam C. Carlson
-
Patent number: 12153209Abstract: A method for providing a composite field of view includes providing two or more input light beams to a scanning mirror and scanning the two or more input light beams using the scanning mirror to provide a plurality of reflected light beams at different angles. Each of the plurality of reflected light beams is configured to provide an image in a respective field of view. The method also includes receiving the plurality of reflected light beams in a waveguide and projecting a plurality of output light beams from the waveguide to form a projected image in the composite field of view. The composite field of view is larger than the respective field of view provided by each of the two or more input light beams.Type: GrantFiled: June 21, 2022Date of Patent: November 26, 2024Assignee: Magic Leap, Inc.Inventors: Ivan Li-Chuen Yeoh, Lionel Ernest Edwin, Barak Freedman, Vaibhav Mathur, Xiaoyang Zhang, Timothy Mark Dalrymple, Clinton Carlisle, Chulwoo Oh, Philip Premysler
-
Publication number: 20230251492Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.Type: ApplicationFiled: April 7, 2023Publication date: August 10, 2023Inventors: Ivan Li Chuen YEOH, Lionel Ernest EDWIN, Nicole Elizabeth SAMEC, Nastasja U. ROBAINA, Vaibhav MATHUR, Timothy Mark DALRYMPLE, Jason SCHAEFER, Clinton CARLISLE, Hui-Chuan CHENG, Chulwoo OH, Philip PREMYSLER, Xiaoyang ZHANG, Adam C. CARLSON
-
Patent number: 11700770Abstract: Disclosed is a thermoelectric generator including a heat source contact, a heat sink contact, and a plurality of co-axial fibers. Each of the co-axial fibers include a core and a cladding disposed about the core. The plurality of co-axial fibers extend from the heat source contact to the heat sink contact. Thermoelectric generators are disclosed including hollow core doped silicon carbide fibers and doubly clad PIN junction fibers. Methods for forming direct PN junctions between oppositely doped fibers are additionally disclosed.Type: GrantFiled: December 13, 2022Date of Patent: July 11, 2023Assignee: em-TECHInventors: Pawel Czubarow, Anthony Czubarow, Philip Premysler
-
Publication number: 20230200239Abstract: Methods of making various fibers are provided including co-axial fibers with oppositely doped cladding and core are provide; hollow core doped silicon carbide fibers are provided; and doubly clad PIN junction fibers are provided. Additionally methods are provided for forming direct PN junctions between oppositely doped fibers are provided. Various thermoelectric generators that incorporate the aforementioned fibers are provided.Type: ApplicationFiled: December 13, 2022Publication date: June 22, 2023Inventors: Pawel Czubarow, Anthony Czubarow, Philip Premysler
-
Patent number: 11644669Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.Type: GrantFiled: March 21, 2018Date of Patent: May 9, 2023Assignee: Magic Leap, Inc.Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Nicole Elizabeth Samec, Nastasja U. Robaina, Vaibhav Mathur, Timothy Mark Dalrymple, Jason Schaefer, Clinton Carlisle, Hui-Chuan Cheng, Chulwoo Oh, Philip Premysler, Xiaoyang Zhang, Adam C. Carlson
-
Publication number: 20220326513Abstract: A method for providing a composite field of view includes providing two or more input light beams to a scanning mirror and scanning the two or more input light beams using the scanning mirror to provide a plurality of reflected light beams at different angles. Each of the plurality of reflected light beams is configured to provide an image in a respective field of view. The method also includes receiving the plurality of reflected light beams in a waveguide and projecting a plurality of output light beams from the waveguide to form a projected image in the composite field of view. The composite field of view is larger than the respective field of view provided by each of the two or more input light beams.Type: ApplicationFiled: June 21, 2022Publication date: October 13, 2022Applicant: Magic Leap, Inc.Inventors: Ivan Li-Chuen Yeoh, Lionel Ernest Edwin, Barak Freedman, Vaibhav Mathur, Xiaoyang Zhang, Timothy Mark Dalrymple, Clinton Carlisle, Chulwoo Oh, Philip Premysler
-
Patent number: 11435572Abstract: An image display system includes an optical subsystem configured to emit a first light beam and a second light beam, wherein the first light beam illuminates a first portion of a composite field of view and the second beam illuminates a second portion of the composite field of view. A scanning mirror is positioned to intercept and reflect the first light beam and the second light beam. The system also has a waveguide with at least one input coupling optical element for receiving the first light beam and the second light beam into the waveguide. The waveguide also has an output coupling optical element for projecting a plurality of output light beams derived from the first light beam and the second light beam from the waveguide to illuminate the composite field of view.Type: GrantFiled: October 27, 2017Date of Patent: September 6, 2022Assignee: Magic Leap, Inc.Inventors: Ivan Li-Chuen Yeoh, Lionel Ernest Edwin, Barak Freedman, Vaibhav Mathur, Xiaoyang Zhang, Timothy Mark Dalrymple, Clinton Carlisle, Chulwoo Oh, Philip Premysler
-
Publication number: 20210263309Abstract: Head-mounted display systems with power saving functionality are disclosed. The systems can include a frame configured to be supported on the head of the user. The systems can also include a head-mounted display disposed on the frame, one or more sensors, and processing electronics in communication with the display and the one or more sensors. In some implementations, the processing electronics can be configured to cause the system to reduce power of one or more components in response to at least in part on a determination that the frame is in a certain position (e.g., upside-down or on top of the head of the user). In some implementations, the processing electronics can be configured to cause the system to reduce power of one or more components in response to at least in part on a determination that the frame has been stationary for at least a threshold period of time.Type: ApplicationFiled: June 18, 2019Publication date: August 26, 2021Inventors: Carlos A. Rivera Cintron, Gregory Michael Link, Jeffrey Scott Sommers, Philip Premysler, Matthew Thomas Hull, Jose Felix Rodriguez, Ricardo Martinez Perez
-
Patent number: 10288226Abstract: An LED light bulb has a hollow LED support/heat sink (222, 602, 702, 900, 802, 1002, 1102, 1216, 1404, 1502, 1606, 1906) with fins (234, 406, 604, 706, 804, 904, 906,1008, 1106, 1620) extending internally and openings at two ends (230, 232, 1522). Heat generated by the LEDs (238, 908, 1242, 1624, 2504) is conducted through the heat sink fins and is removed by a convectively driven air flow that flows through the LED support/heat sink. LEDs are mounted on multiple external faces (236, 404, 910, 1524, 1622) of the LED support/heat sink thereby providing illumination in all directions. Lenses (1246, 2102, 2104) are provided for the LEDs to make the illumination highly uniform.Type: GrantFiled: March 24, 2014Date of Patent: May 14, 2019Inventor: Philip Premysler
-
Publication number: 20180275410Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.Type: ApplicationFiled: March 21, 2018Publication date: September 27, 2018Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Nicole Elizabeth Samec, Nastasja U. Robaina, Vaibhav Mathur, Tim Dalrymple, Jason Schaefer, Clinton Carlisle, Hui-Chuan Cheng, Chulwoo Oh, Philip Premysler, Xiaoyang Zhang, Adam Carlson
-
Publication number: 20180120559Abstract: An image display system includes an optical subsystem configured to emit a first light beam and a second light beam, wherein the first light beam illuminates a first portion of a composite field of view and the second beam illuminates a second portion of the composite field of view. A scanning mirror is positioned to intercept and reflect the first light beam and the second light beam. The system also has a waveguide with at least one input coupling optical element for receiving the first light beam and the second light beam into the waveguide. The waveguide also has an output coupling optical element for projecting a plurality of output light beams derived from the first light beam and the second light beam from the waveguide to illuminate the composite field of view.Type: ApplicationFiled: October 27, 2017Publication date: May 3, 2018Applicant: Magic Leap, Inc.Inventors: Ivan Li-Chuen YEOH, Lionel Ernest EDWIN, Barak FREEDMAN, Vaibhav MATHUR, Xiaoyang ZHANG, Timothy Mark DALRYMPLE, Clinton CARLISLE, Chulwoo OH, Philip PREMYSLER
-
Patent number: 9163788Abstract: LED light bulbs especially suited for use in table lamps or floor lamps with lamp shades. The LED light bulbs include optics which provide more limited but more uniform illumination of the lamp shade and provide more uniform illumination through the top and bottom apertures of the lamp shade. The light bulbs comprise an electrical coupling base (e.g., Edison screw base) coupled via an insulating coupling piece to a tube. Metal Core Printed Circuit Boards on which LEDs with lenses are mounted are mechanically coupled to the tube.Type: GrantFiled: September 20, 2012Date of Patent: October 20, 2015Inventor: Philip A. Premysler
-
Publication number: 20140340870Abstract: An LED light bulb has a hollow LED support/heat sink (222, 602, 702, 900, 802, 1002, 1102, 1216, 1404, 1502, 1606, 1906) with fins (234, 406, 604, 706, 804, 904, 906,1008, 1106, 1620) extending internally and openings at two ends (230, 232, 1522). Heat generated by the LEDs (238, 908, 1242, 1624, 2504) is conducted through the heat sink fins and is removed by a convectively driven air flow that flows through the LED support/heat sink. LEDs are mounted on multiple external faces (236, 404, 910, 1524, 1622) of the LED support/heat sink thereby providing illumination in all directions. Lenses (1246, 2102, 2104) are provided for the LEDs to make the illumination highly uniform.Type: ApplicationFiled: March 24, 2014Publication date: November 20, 2014Inventor: Philip Premysler
-
Patent number: 8865996Abstract: Continuous ceramic (e.g., silicon carbide) nanofibers (502, 602, 604, 606, 608, 702, 704, 1102, 1104) which are optionally p or n type doped are manufactured by electrospinning a polymeric ceramic precursor to produce fine strands of polymeric ceramic precursor which are then pyrolized. The ceramic nanofibers may be used in a variety of applications not limited to reinforced composite materials (400), thermoelectric generators (600, 700) and high temperature particulate filters (1200).Type: GrantFiled: September 19, 2008Date of Patent: October 21, 2014Assignee: eM-TECHInventors: Pawel Czubarow, Philip Premysler
-
Patent number: 8789744Abstract: Reflow solderable, surface mount LED optic mounting devices are provided. Embodiments that include turnings (e.g., made on a swiss turning machine) and stampings (e.g., made with a progressive die) are provided. The LED optic mounting devices are suitably positioned by the same pick-and-place machine that is used to mount LED on planar surface with circuitry and solder pads and are attached to the solder pads by soldering.Type: GrantFiled: October 16, 2011Date of Patent: July 29, 2014Inventor: Philip Premysler
-
Publication number: 20140140069Abstract: An illumination assembly includes a planar or piecewise planar metal reflector positioned very close to an LED subtending a first azimuthal angle range ?1 that is less than 360° about the LED and a partial lens positioned close to the LED and subtending a second azimuthal angle range (e.g., ?2=360°??1) less than 360° about the LED. The metal reflector forming one or more images of the LED that are close to the LED, thereby limiting optical source size growth and reflecting light into the partial lens.Type: ApplicationFiled: March 24, 2013Publication date: May 22, 2014Inventor: Philip Premysler
-
Patent number: 8680754Abstract: An LED light bulb has a hollow LED support/heat sink (222, 602, 702, 900, 802, 1002, 1102, 1216, 1404, 1502, 1606, 1906) with fins (234, 406, 604, 706, 804, 904, 906, 1008, 1106, 1620) extending internally and openings at two ends (230, 232, 1522). Heat generated by the LEDs (238, 908, 1242, 1624, 2504) is conducted through the heat sink fins and is removed by a convectively driven air flow that flows through the LED support/heat sink. LEDs are mounted on multiple external faces (236, 404, 910, 1524, 1622) of the LED support/heat sink thereby providing illumination in all directions. Lenses (1246, 2102, 2104) are provided for the LEDs to make the illumination highly uniform.Type: GrantFiled: January 15, 2009Date of Patent: March 25, 2014Inventor: Philip Premysler
-
Publication number: 20140078735Abstract: LED light bulbs especially suited for use in table lamps or floor lamps with lamp shades. The LED light bulbs include optics which provide more limited but more uniform illumination of the lamp shade and provide more uniform illumination through the top and bottom apertures of the lamp shade. The light bulbs comprise an electrical coupling base (e.g., Edison screw base) coupled via an insulating coupling piece to a tube. Metal Core Printed Circuit Boards on which LEDs with lenses are mounted are mechanically coupled to the tube.Type: ApplicationFiled: September 20, 2012Publication date: March 20, 2014Inventor: Philip A. Premysler