Patents by Inventor Philip Allan Kraus

Philip Allan Kraus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12198966
    Abstract: A method and apparatus for biasing regions of a substrate in a plasma assisted processing chamber are provided. Biasing of the substrate, or regions thereof, increases the potential difference between the substrate and a plasma formed in the processing chamber thereby accelerating ions from the plasma towards the active surfaces of the substrate regions. A plurality of bias electrodes herein are spatially arranged across the substrate support in a pattern that is advantageous for managing uniformity of processing results across the substrate.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: January 14, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Thai Cheng Chua, Jaeyong Cho
  • Patent number: 12191118
    Abstract: Embodiments disclosed herein include a housing for a source array. In an embodiment, the housing comprises a conductive body, where the conductive body comprises a first surface and a second surface opposite from the first surface. In an embodiment a plurality of openings are formed through the conductive body and a channel is disposed into the second surface of the conductive body. In an embodiment, a cover is over the channel, and the cover comprises first holes that pass through a thickness of the cover. In an embodiment, the housing further comprises a second hole through a thickness of the conductive body. In an embodiment, the second hole intersects with the channel.
    Type: Grant
    Filed: January 22, 2024
    Date of Patent: January 7, 2025
    Assignee: Applied Materials, Inc.
    Inventors: James Carducci, Richard C. Fovell, Larry D. Elizaga, Silverst Rodrigues, Vladimir Knyazik, Philip Allan Kraus, Thai Cheng Chua
  • Publication number: 20240379331
    Abstract: Embodiments disclosed herein include an applicator for microwave plasma generation. In an embodiment, the applicator comprises a resonator body with a hole into an axial center of the resonator body, where the resonator body comprises a first dielectric material. In an embodiment, the applicator further comprises a pin inserted into the hole, where the pin is an electrically conductive material. In an embodiment, the applicator further comprises a plate under the resonator body, where the plate comprises a second dielectric material that is different than the first dielectric material.
    Type: Application
    Filed: May 8, 2023
    Publication date: November 14, 2024
    Inventors: Thai Cheng Chua, Kelvin Chan, Adam Fischbach, Farzad Houshmand, Christian Valencia, Philip Allan Kraus
  • Patent number: 12144090
    Abstract: Embodiments disclosed herein include a housing for a source assembly. In an embodiment, the housing comprises a conductive body with a first surface and a second surface opposite from the first surface, and a plurality of openings through a thickness of the conductive body between the first surface and the second surface. In an embodiment, the housing further comprises a channel into the first surface of the conductive body, and a cover over the channel. In an embodiment, a first stem over the cover extends away from the first surface, and a second stem over the cover extends away from the first surface. In an embodiment, the first stem and the second stem open into the channel.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: November 12, 2024
    Assignee: Applied Materials, Inc.
    Inventors: James Carducci, Richard C. Fovell, Larry D. Elizaga, Silverst Rodrigues, Thai Cheng Chua, Philip Allan Kraus
  • Publication number: 20240321610
    Abstract: The present disclosure generally relates to a method and apparatus for determining a metric related to erosion of a ring assembly used in an etching within a plasma processing chamber. In one example, the apparatus is configured to obtain a metric indicative of erosion on an edge ring disposed on a substrate support assembly in a plasma processing chamber. A sensor obtains the metric for the edge ring. The metric correlates to the quantity of erosion in the edge ring. In another example, the ring sensor may be arranged outside of a periphery of a substrate support assembly. The metric may be acquired by the ring sensor through a plasma screen.
    Type: Application
    Filed: May 28, 2024
    Publication date: September 26, 2024
    Inventors: Yaoling PAN, Patrick John TAE, Michael D. WILLWERTH, Leonard M. TEDESCHI, Daniel Sang BYUN, Philip Allan KRAUS, Phillip CRIMINALE, Changhun LEE, Rajinder DHINDSA, Andreas SCHMID, Denis M. KOOSAU
  • Patent number: 12094707
    Abstract: Embodiments include a method of processing a substrate. In an embodiment, the method comprises flowing one or more source gasses into a processing chamber, and inducing a plasma from the source gases with a plasma source that is operated in a first mode. In an embodiment, the method may further comprise biasing the substrate with a DC power source that is operated in a second mode. In an embodiment, the method may further comprise depositing a film on the substrate.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: September 17, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Kelvin Chan, Travis Koh, Simon Huang, Philip Allan Kraus
  • Publication number: 20240282554
    Abstract: Embodiments include a modular high-frequency emission source. In an embodiment, the modular high-frequency emission source includes a plurality of high-frequency emission modules, where each high-frequency emission module comprises and oscillator module, an amplification module, and an applicator. In an embodiment the oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, the amplification module is coupled to the oscillator module. In an embodiment, the applicator is coupled to the amplification module. In an embodiment, each high-frequency emission module includes a different oscillator module.
    Type: Application
    Filed: May 1, 2024
    Publication date: August 22, 2024
    Inventors: Thai Cheng Chua, Christian Amormino, Hanh Nguyen, Kallol Bera, Philip Allan Kraus
  • Patent number: 12033835
    Abstract: Embodiments disclosed herein include a modular microwave source array. In an embodiment, a housing assembly for the source array comprises a first conductive layer, wherein the first conductive layer comprises a first coefficient of thermal expansion (CTE), and a second conductive layer over the first conductive layer, wherein the second conductive layer comprises a second CTE that is different than the first CTE. In an embodiment, the housing assembly further comprises a plurality of openings through the housing assembly, where each opening passes through the first conductive layer and the second conductive layer.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: July 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Robert Moore, James Carducci, Richard Fovell, Sathya Swaroop Ganta, Karthikeyan Balaraman, Silverst Rodrigues
  • Publication number: 20240219337
    Abstract: Embodiments disclosed herein include gas concentration sensors, and methods of using such gas concentration sensors. In an embodiment, a gas concentration sensor comprises a first electrode. In an embodiment the first electrode comprises first fingers. In an embodiment, the gas concentration sensor further comprises a second electrode. In an embodiment, the second electrode comprises second fingers that are interdigitated with the first fingers.
    Type: Application
    Filed: March 13, 2024
    Publication date: July 4, 2024
    Inventors: XIAOPU LI, KALLOL BERA, YAOLING PAN, KELVIN CHAN, AMIR BAYATI, PHILIP ALLAN KRAUS, KENRIC T. CHOI, WILLIAM JOHN DURAND
  • Patent number: 12012652
    Abstract: Embodiments include a processing tool for processing substrates in a low processing pressure and a high processing pressure. In an embodiment, the processing tool comprises a chamber body and a pedestal in the chamber body. In an embodiment, the pedestal is displaceable, and the pedestal has a first surface and a second surface opposite the first surface. In an embodiment, the processing tool further comprises a first gas port for supplying gasses into the chamber body and a first exhaust positioned above the first surface of the pedestal. In an embodiment, the embodiment further comprises a second gas port for supplying gasses into the chamber body and a second exhaust positioned below the second surface of the pedestal.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: June 18, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Kelvin Chan, Yang Guo, Ashish Goel, Anantha Subramani, Philip Allan Kraus
  • Patent number: 12009236
    Abstract: The present disclosure generally relates to a method and apparatus for determining a metric related to erosion of a ring assembly used in an etching within a plasma processing chamber. In one example, the apparatus is configured to obtain a metric indicative of erosion on an edge ring disposed on a substrate support assembly in a plasma processing chamber. A sensor obtains the metric for the edge ring. The metric correlates to the quantity of erosion in the edge ring. In another example, the ring sensor may be arranged outside of a periphery of a substrate support assembly. The metric may be acquired by the ring sensor through a plasma screen.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: June 11, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yaoling Pan, Patrick John Tae, Michael D. Willwerth, Leonard M. Tedeschi, Daniel Sang Byun, Philip Allan Kraus, Phillip A. Criminale, Changhun Lee, Rajinder Dhindsa, Andreas Schmid, Denis M. Koosau
  • Publication number: 20240186118
    Abstract: Embodiments disclosed herein include a housing for a source array. In an embodiment, the housing comprises a conductive body, where the conductive body comprises a first surface and a second surface opposite from the first surface. In an embodiment a plurality of openings are formed through the conductive body and a channel is disposed into the second surface of the conductive body. In an embodiment, a cover is over the channel, and the cover comprises first holes that pass through a thickness of the cover. In an embodiment, the housing further comprises a second hole through a thickness of the conductive body. In an embodiment, the second hole intersects with the channel.
    Type: Application
    Filed: January 22, 2024
    Publication date: June 6, 2024
    Inventors: JAMES CARDUCCI, RICHARD C. FOVELL, LARRY D. ELIZAGA, SILVERST RODRIGUES, VLADIMIR KNYAZIK, PHILIP ALLAN KRAUS, THAI CHENG CHUA
  • Patent number: 12002654
    Abstract: Embodiments include a modular high-frequency emission source. In an embodiment, the modular high-frequency emission source includes a plurality of high-frequency emission modules, where each high-frequency emission module comprises and oscillator module, an amplification module, and an applicator. In an embodiment the oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, the amplification module is coupled to the oscillator module. In an embodiment, the applicator is coupled to the amplification module. In an embodiment, each high-frequency emission module includes a different oscillator module.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: June 4, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Thai Cheng Chua, Christian Amormino, Hanh Nguyen, Kallol Bera, Philip Allan Kraus
  • Publication number: 20240153795
    Abstract: Embodiments disclosed herein include a semiconductor processing tool. In an embodiment, the semiconductor processing tool comprises a chamber, and a lid configured to seal the chamber. In an embodiment, a modular microwave plasma applicator is provided through the lid, and an optical port is provided through the lid and adjacent to the modular microwave plasma source. In an embodiment, a pin is inserted in the optical port.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: Adam Fischbach, Richard McKissick, Brian Hatcher, Christian Valencia, Thai Cheng Chua, Philip Allan Kraus
  • Patent number: 11959868
    Abstract: Embodiments disclosed herein include gas concentration sensors, and methods of using such gas concentration sensors. In an embodiment, a gas concentration sensor comprises a first electrode. In an embodiment the first electrode comprises first fingers. In an embodiment, the gas concentration sensor further comprises a second electrode. In an embodiment, the second electrode comprises second fingers that are interdigitated with the first fingers.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: April 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xiaopu Li, Kallol Bera, Yaoling Pan, Kelvin Chan, Amir Bayati, Philip Allan Kraus, Kenric T. Choi, William John Durand
  • Patent number: 11955331
    Abstract: Embodiments includes methods for forming a silicon nitride film on a substrate in a deposition chamber. In embodiments, the substrate is sequentially exposed to a sequence of processing gases, comprising: a silicon halide precursor that absorbs onto a surface of the substrate to form an absorbed layer of the silicon halide, a first reacting gas that includes N2 and one or both of Ar and He, and a second reacting gas comprising a hydrogen-containing gas and one or more of Ar, He, and N2. In embodiments, the hydrogen-containing gas includes at least one of H2 (molecular hydrogen), NH3 (ammonia), N2H2 (diazene), N2H4 (hydrazine), and HN3 (hydrogen azide). Embodiments may include repeating the sequence until a desired thickness of the silicon nitride film is obtained.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Hanhong Chen, Kelvin Chan, Philip Allan Kraus, Thai Cheng Chua
  • Publication number: 20240102876
    Abstract: Embodiments disclosed herein include diagnostic substrates and methods of using the diagnostic substrates to extract plasma parameters. In an embodiment, a diagnostic substrate comprises a substrate and an array of resonators across the substrate. In an embodiment, the array of resonators comprises at least a first resonator with a first structure and a second resonator with a second structure. In an embodiment, the first structure is different than the second structure.
    Type: Application
    Filed: December 6, 2023
    Publication date: March 28, 2024
    Inventors: CHUANG-CHIA LIN, DAVID PETERSON, PHILIP ALLAN KRAUS, AMIR BAYATI
  • Publication number: 20240096605
    Abstract: Embodiments disclosed herein include a semiconductor processing tool. In an embodiment, the semiconductor processing tool comprises a chamber, a pedestal in the chamber, and a first gas feed system on a first side of the pedestal. In an embodiment, the first gas feed system comprises a first exhaust line with a first valve to open and close the first exhaust line, and a first source gas feed line with a second valve to open and close the first source gas feed line. In an embodiment, the semiconductor processing tool further comprises a second gas feed system on a second side of the pedestal. In an embodiment, the second gas feed system comprises a second exhaust line with a third valve to open and close the second exhaust line, and a second source gas feed line with a fourth valve to open and close the second source gas feed line.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Inventors: Arun Kumar Kotrappa, CHANDRASHEKARA BAGINAGERE, RAMCHARAN SUNDAR, SEYYED FAZELI, ANANTHA SUBRAMANI, SIYU ZHU, AKHIL SINGHAL, PHILIP ALLAN KRAUS
  • Patent number: 11881384
    Abstract: Embodiments disclosed herein include a housing for a source array. In an embodiment, the housing comprises a conductive body, where the conductive body comprises a first surface and a second surface opposite from the first surface. In an embodiment a plurality of openings are formed through the conductive body and a channel is disposed into the second surface of the conductive body. In an embodiment, a cover is over the channel, and the cover comprises first holes that pass through a thickness of the cover. In an embodiment, the housing further comprises a second hole through a thickness of the conductive body. In an embodiment, the second hole intersects with the channel.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: January 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: James Carducci, Richard C. Fovell, Larry D. Elizaga, Silverst Rodrigues, Vladimir Knyazik, Philip Allan Kraus, Thai Cheng Chua
  • Patent number: 11874189
    Abstract: Embodiments disclosed herein include diagnostic substrates and methods of using the diagnostic substrates to extract plasma parameters. In an embodiment, a diagnostic substrate comprises a substrate and an array of resonators across the substrate. In an embodiment, the array of resonators comprises at least a first resonator with a first structure and a second resonator with a second structure. In an embodiment, the first structure is different than the second structure.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: January 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Chuang-Chia Lin, David Peterson, Philip Allan Kraus, Amir Bayati