Patents by Inventor Philip Andrew Eckhoff

Philip Andrew Eckhoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140159590
    Abstract: A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 12, 2014
    Inventors: Jesse R. Cheatham, III, Philip Andrew Eckhoff, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 8692226
    Abstract: A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: April 8, 2014
    Inventors: Jesse R. Cheatham, III, Philip Andrew Eckhoff, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20130229133
    Abstract: Field emission devices are configured in addressable arrays.
    Type: Application
    Filed: April 17, 2013
    Publication date: September 5, 2013
    Inventors: Jesse R. Cheatham, III, Philip Andrew Eckhoff, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20130229105
    Abstract: A field emission device is configured as a heat engine, wherein the configuration of the heat engine is variable.
    Type: Application
    Filed: February 22, 2013
    Publication date: September 5, 2013
    Applicant: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Philip Andrew Eckhoff, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y.H. Wood
  • Publication number: 20130168635
    Abstract: A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
    Type: Application
    Filed: August 16, 2012
    Publication date: July 4, 2013
    Inventors: Jesse R. Cheatham, III, Philip Andrew Eckhoff, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 8427014
    Abstract: Described embodiments include a system, apparatus, and method. A described system includes a power-receiving connector configured to be usable after sterilization, to releasably couple with a power-source connector, and configured to be carried by a health care provider proximate to a first body portion. If coupled, the power-receiving connector is operable to receive an electrical or radiant power from the power-source connector. The system also includes a power-output device configured to be usable after sterilization, to interact with a power-receiving device connected to a handheld medical device, and configured to be carried by the health care provider proximate to a second body portion. If interacting, the received electrical or radiant power is transferred from the power-output device to the power-receiving device.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: April 23, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Philip Andrew Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Erez Lieberman, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20130046516
    Abstract: An embodiment of an apparatus includes a simulator and a determiner. The a simulator is configured to simulate a system and to propagate at least one state of the simulated system through time in response to a value of a parameter, and the determiner is configured to determine a next value of the parameter in response to a characteristic of another state of the model and a representation of at least one level set.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 21, 2013
    Applicant: TOKITAE LLC
    Inventors: Michael H. Baym, Philip Andrew Eckhoff, Daniel Jay MacDonald, Nathan P. Myhrvold, Karima R. Nigmatulina, Charles Whitmer, Lowell L. Wood, JR.
  • Publication number: 20130046515
    Abstract: An embodiment of an apparatus includes a simulator, a generator, and a determiner. The simulator is configured to simulate a system and to propagate at least one state of the simulated system through time in response to a value of a parameter. The generator is configured to generate a representation of a region of a first plot having dimensions that respectively correspond at least to the parameter and to a characteristic of a state of the simulated system, and a representation of a region of a second plot having dimensions that respectively correspond at least to the parameter and to another characteristic of a state of the simulated system. And the determiner is configured to determine a next value of the parameter in response to the representations of the regions of the first and second plots.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 21, 2013
    Applicant: TOKITAE LLC
    Inventors: Michael H. Baym, Philip Andrew Eckhoff, Daniel Jay MacDonald, Nathan P. Myhrvold, Karima R. Nigmatulina, Charles Whitmer, Lowell L. Wood, JR.
  • Publication number: 20130046517
    Abstract: An embodiment of an apparatus includes a simulator, generator, and determiner. The simulator is configured to simulate a system and to propagate at least one state of the simulated system through time in response to a value of a parameter, and the generator is configured to generate a representation of a region of a plot having dimensions that respectively correspond at least to the parameter and to a characteristic of a state of the simulated system. And the determiner is configured to determine a next value of the parameter in response to the representation of the region.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 21, 2013
    Applicant: TOKITAE LLC
    Inventors: Michael H. Baym, Philip Andrew Eckhoff, Daniel Jay MacDonald, Nathan P. Myhrvold, Karima R. Nigmatulina, Charles Whitmer, Lowell L. Wood, JR.
  • Publication number: 20110278944
    Abstract: Described embodiments include a system, an apparatus, and a method. A described system includes a power receiver configured to wirelessly receive a first power from a wireless power transmitter source, and configured to be carried by a health care provider. The system also includes an energy storage device configured to store energy derived from the first power, to supply a second power, and configured to be carried by the health care provider. The system further includes a power-output device configured to interact with a power-receiving device connected to a handheld medical device, and configured to be carried by the health care provider proximate. If interacting, a third power is transferred from the power-output device to the power-receiving device. The system also includes a first connective structure configured to transfer the first power between the portable power receiver and the energy storage device, and configured to be carried by the health care provider.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 17, 2011
    Inventors: Philip Andrew Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Erez Lieberman, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Publication number: 20110278942
    Abstract: Described embodiments include a system, an apparatus, and a method. A described system includes a portable energy source configured to supply electrical or radiant power, and configured to be carried proximate to a first body portion of a health care provider. The system also includes a portable power transmitter configured to wirelessly transfer the electrical or radiant power supplied by the portable energy source from the portable energy source to a wireless power receiver connected to a handheld medical device. The system further includes a connective structure configured to transfer the electrical or radiant power supplied by the portable energy source between the portable energy source and the portable power transmitter, and configured to be carried proximate to the body of the health care provider.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 17, 2011
    Inventors: Philip Andrew Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Erez Lieberman, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Publication number: 20110278957
    Abstract: Described embodiments include a system, an apparatus, and a method. A described system includes a portable energy source configured to supply electrical or radiant power and configured to be carried proximate to a first body portion of a health care provider. The system also includes a power-output connector configured to releasably couple with a power-receiving connector connected to a handheld medical device, the power-output connector configured to be carried proximate to a second body portion at a position distal of a shoulder joint of the health care provider. If coupled, the power-output connector and the power-receiving connector are operable to transfer the electrical or radiant power supplied by the portable energy source. The system further includes a connective structure configured to transfer the electrical or radiant power supplied by the portable energy source between the portable energy source and the power-output connector.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 17, 2011
    Inventors: Philip Andrew Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Erez Lieberman, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Publication number: 20110278943
    Abstract: Described embodiments include a system, apparatus, and method. A described wearable power supply system configured to be usable after sterilization includes a portable energy source configured to supply electrical or radiant power, and configured to be carried by a person proximate to a first body portion of the person. The system also includes a portable power-output device configured to interact with a power-receiving device connected to a powerable handheld device, and configured to be carried by the person proximate to a second body portion at a position distal of a shoulder joint of the person. If interacting, the supplied electrical or radiant power is transferred from the portable power-output device to the power-receiving device. The system further includes a connective structure configured to transfer the supplied electrical or radiant power between the portable energy source and the power-output device.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 17, 2011
    Inventors: Philip Andrew Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Erez Lieberman, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Publication number: 20110278956
    Abstract: Described embodiments include a system, apparatus, and method. A described system includes a power-receiving connector configured to be usable after sterilization, to releasably couple with a power-source connector, and configured to be carried by a health care provider proximate to a first body portion. If coupled, the power-receiving connector is operable to receive an electrical or radiant power from the power-source connector. The system also includes a power-output device configured to be usable after sterilization, to interact with a power-receiving device connected to a handheld medical device, and configured to be carried by the health care provider proximate to a second body portion. If interacting, the received electrical or radiant power is transferred from the power-output device to the power-receiving device.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 17, 2011
    Inventors: Philip Andrew Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Erez Lieberman, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Publication number: 20110282415
    Abstract: Described embodiments include a system, an apparatus, and a method. A described system includes a portable power receiver configured to wirelessly receive electrical or radiant power from a wireless power transmitter source, and configured to be carried by a health care provider proximate to a first body portion of the health care provider. The system also includes a portable power-output device configured to interact with a power-receiving device connected to a handheld medical device, and configured to be carried by the health care provider proximate to a second body portion of the health care provider. If interacting, the electrical or radiant power is transferred from the portable power-output device to the power-receiving device. The system further includes a connective structure configured to transfer the electrical or radiant power between the portable power receiver and the portable power-output device.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 17, 2011
    Inventors: Philip Andrew Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Erez Lieberman, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, JR.