Patents by Inventor Philip Bos

Philip Bos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111091
    Abstract: Various embodiments provide for a circuit package including an electronic integrated circuit comprising a plurality of processing elements, and a plurality of bidirectional photonic channels, e.g., implemented in a photonic integrated circuit underneath the electronic integrated circuit, that connect the processing elements into an electro-photonic network. The processing elements include message routers with photonic-channel interfaces. Each bidirectional photonic channel interfaces at one end with a photonic-channel interface of the message router of a first one of the processing elements and at the other end with a photonic-channel interface of the message router of a second one of the processing elements and is configured to optically transfer messages (e.g., packets) between the message routers of the first and second processing elements.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Inventors: Philip Winterbottom, Martinus Bos
  • Publication number: 20240019635
    Abstract: A waveguide assembly includes a waveguide having a first surface and a second surface; an input deflection grating; an output deflection grating; and a first compensator layer on the first surface of the waveguide. The first compensator layer includes a material selected from aligned liquid crystal reactive mesogens, birefringent polymers, and inorganic birefringent materials.
    Type: Application
    Filed: December 1, 2021
    Publication date: January 18, 2024
    Inventors: Xiayu FENG, Philip BOS, Yun Han LEE, Lu LU
  • Publication number: 20230288731
    Abstract: A non-mechanical, electrically tunable optical system provides both focus and astigmatism power correction with an adjustable axis. The optical system includes three liquid crystal based cylindrical lenses which are simple, low cost, and have compact flat structure.
    Type: Application
    Filed: March 10, 2023
    Publication date: September 14, 2023
    Inventors: Amit Kumar Bhowmick, Doug Bryant, Philip Bos, Afsoon Jamali
  • Publication number: 20220373855
    Abstract: Optical phase control elements are based on the Pancharatnam phase. Tunable liquid crystal devices containing the optical phase control elements may include a liquid crystal cell between a pair of substrates, a first plurality of electrodes, and a second plurality of electrodes. Each individual phase control element is defined by one electrode from the first plurality and one electrode from the second plurality.
    Type: Application
    Filed: February 22, 2022
    Publication date: November 24, 2022
    Applicants: Kent State University, Government of the United States as Represented by the Secretary of the Air Force
    Inventors: Comrun Yousefzadeh, Philip Bos, Andre Van Rynbach
  • Patent number: 10928701
    Abstract: An optical beam deflection device includes a dual-twist Pancharatnam phase device (DTPPD) with first and second Pancharatnam layers each with an in-plane twist and a transverse twist that is at least 60° over the thickness of each Pancharatnam layer, and more preferably at least 75°, and still more preferably at least 90°, with the twist sense of the second Pancharatnam layer being opposite the twist sense of the first Pancharatnam layer. To provide switchable beam deflection, an electro-optic polarization element inputs a circularly polarized light beam to the DTPPD with left-handed circular polarization or right-handed circular polarization controlled by an electrical input.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: February 23, 2021
    Assignee: Kent State University
    Inventors: Hsien-Hui Cheng, Philip Bos, Achintya Bhowmik
  • Publication number: 20210011353
    Abstract: Optical phase control elements are based on the Pancharatnam phase. Tunable liquid crystal devices containing the optical phase control elements may include a liquid crystal cell between a pair of substrates, a first plurality of electrodes, and a second plurality of electrodes. Each individual phase control element is defined by one electrode from the first plurality and one electrode from the second plurality.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Applicants: Kent State University, Government of the United States as Represented by the Secretary of the Air Force
    Inventors: Comrun Yousefzadeh, Philip Bos, Andre Van Rynbach
  • Patent number: 10634881
    Abstract: An optical magnification system comprises two Pancharatnam lenses, and provides a first magnification for left-hand circularly polarized light and a second magnification different from the first magnification for right-hand circularly polarized light. An optical magnification system comprises two lenses, each having different focal lengths for left-handed and right-handed circularly polarized light, respectively, and configured to provide a first magnification for left-handed circularly polarized light and a second magnification different from the first magnification for right-handed circularly polarized light.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: April 28, 2020
    Assignee: Kent State University
    Inventors: Kun Gao, Hsien-Hui Cheng, Philip Bos, Colin P. McGinty, Achintya Bhowmik
  • Patent number: 10545344
    Abstract: A stereoscopic display device is provided for displaying a three-dimensional (3D) image as viewed by eyes consisting of a left eye and a right eye. In the display device, a single display screen, or separate left and right display screens, present a left image to the left eye but not the right eye, and present a right image to the right eye but not the left eye. A gaze distance tracker is configured to track gaze distance of the eyes. Variable-power lenses include a left variable-power lens arranged to provide eye accommodation for the left eye, and a right variable-power lens arranged to provide eye accommodation for the right eye. An electronic eye accommodation controller is configured to control the power of the variable power lenses to allow the image from the display to be focused on the retina, while the biological eye lens is accommodated to the gaze distance.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: January 28, 2020
    Assignee: Kent State University
    Inventors: Philip Bos, Afsoon Jamali, Anders Grunnet-Jepson, Achintya K. Bhowmik
  • Publication number: 20190056636
    Abstract: An optical beam deflection device includes a dual-twist Pancharatnam phase device (DTPPD) with first and second Pancharatnam layers each with an in-plane twist and a transverse twist that is at least 60° over the thickness of each Pancharatnam layer, and more preferably at least 75°, and still more preferably at least 90°, with the twist sense of the second Pancharatnam layer being opposite the twist sense of the first Pancharatnam layer. To provide switchable beam deflection, an electro-optic polarization element inputs a circularly polarized light beam to the DTPPD with left-handed circular polarization or right-handed circular polarization controlled by an electrical input.
    Type: Application
    Filed: February 22, 2017
    Publication date: February 21, 2019
    Applicants: KENT STATE UNIVERSITY, INTEL CORPORATION
    Inventors: Hsien-Hui Cheng, Philip Bos, Achintya Bhowmik
  • Publication number: 20180129018
    Abstract: An optical magnification system comprises two Pancharatnam lenses, and provides a first magnification for left-hand circularly polarized light and a second magnification different from the first magnification for right-hand circularly polarized light. An optical magnification system comprises two lenses, each having different focal lengths for left-handed and right-handed circularly polarized light, respectively, and configured to provide a first magnification for left-handed circularly polarized light and a second magnification different from the first magnification for right-handed circularly polarized light.
    Type: Application
    Filed: March 25, 2016
    Publication date: May 10, 2018
    Applicants: Kent State University, Intel Corporation
    Inventors: Hsien-Hui Cheng, Philip Bos, Achintya Bhowmik
  • Publication number: 20170336638
    Abstract: A stereoscopic display device is provided for displaying a three-dimensional (3D) image as viewed by eyes consisting of a left eye and a right eye. In the display device, a single display screen, or separate left and right display screens, present a left image to the left eye but not the right eye, and present a right image to the right eye but not the left eye. A gaze distance tracker is configured to track gaze distance of the eyes. Variable-power lenses include a left variable-power lens arranged to provide eye accommodation for the left eye, and a right variable-power lens arranged to provide eye accommodation for the right eye. An electronic eye accommodation controller is configured to control the power of the variable power lenses to allow the image from the display to be focused on the retina, while the biological eye lens is accommodated to the gaze distance.
    Type: Application
    Filed: May 19, 2017
    Publication date: November 23, 2017
    Inventors: Philip Bos, Afsoon Jamali, Anders Grunnet-Jepson, Achintya K. Bhowmik
  • Publication number: 20160202573
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Patent number: 9323113
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: April 26, 2016
    Assignee: KENT STATE UNIVERSITY
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Patent number: 9280020
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: March 8, 2016
    Assignee: KENT STATE UNIVERSITY
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Publication number: 20140132904
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Application
    Filed: May 23, 2013
    Publication date: May 15, 2014
    Applicant: KENT STATE UNIVERSITY
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Patent number: 8654281
    Abstract: Liquid crystal cells and lenses having a variable resulting pre-tilt across two or more areas of the cell, and in particular, cells and lenses are provided wherein a resulting pre-tilt is varied across the cell according to any desired birefringence profile that can be utilized in liquid crystalline optical elements and liquid crystal displays. Methods of fabrication of the liquid crystal cells with variable resulting pre-tilt are disclosed.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 18, 2014
    Assignees: California State University, Sacramento, Kent State University
    Inventors: Philip Bos, Vassili V. Sergan, Tatiana A. Sergan
  • Publication number: 20110170039
    Abstract: Liquid crystal cells and lenses having a variable resulting pre-tilt across two or more areas of the cell, and in particular, cells and lenses are provided wherein a resulting pre-tilt is varied across the cell according to any desired birefringence profile that can be utilized in liquid crystalline optical elements and liquid crystal displays. Methods of fabrication of the liquid crystal cells with variable resulting pre-tilt are disclosed.
    Type: Application
    Filed: September 2, 2010
    Publication date: July 14, 2011
    Applicants: Kent State University, California State University
    Inventors: Philip Bos, Vassili V. Sergan, Tatiana A. Sergan
  • Publication number: 20110025955
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Application
    Filed: June 17, 2010
    Publication date: February 3, 2011
    Applicant: Kent State University
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Publication number: 20080284973
    Abstract: A method of fabricating a liquid crystal display device by introducing a ferroelectric liquid crystal (FLC) between two substrates, contacting the FLC to a molecularly smooth edge, and aligning the FLC by introducing a temperature gradient normal to the edge. In one embodiment, the FLC is aligned by cooling it from an isotropic phase to a smectic phase at a rate that is relatively slow. For example, the cooling rate may be less than about 3 degrees Celsius per hour. In one embodiment, smectic layers are formed that are parallel to the edge. In one embodiment, the molecularly smooth edge is an air bubble.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 20, 2008
    Inventors: Bentley Wall, Dmylro Reznikov, Philip Bos, Michael J. O'Callaghan, Mark A. Handschy
  • Patent number: 7289189
    Abstract: The present invention provides a full color liquid crystal display of passive matrix design that includes a polarizer, an analyzer having a transmission axis, and at least one light generation stage positioned between the polarizer and analyzer for transmitting light of a desired wavelength to the analyzer. This light generation stage includes a first retarder stack that rotates desired wavelengths of light to a particular polarization state, a second retarder stack inverted and rotated by 90 degrees with respect to said first retarder stack, and a passive matrix addressed optical element positioned between the first and second retarder stacks. The retardation and orientation of each of the first retarder stack, second retarder stack, and passive matrix addressed optical element are optimized so as to provide a color generation stage that places desired wavelengths of light substantially along the transmission axis of the analyzer.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: October 30, 2007
    Assignee: Kent State University
    Inventors: Salman Saeed, Philip Bos