Patents by Inventor Philip Dafesh

Philip Dafesh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11133838
    Abstract: Under one aspect, a method is provided for processing a received signal, the received signal including a desired signal and an interference signal that spectrally overlaps the desired signal. The method can include obtaining an amplitude of the received signal. The method also can include obtaining an average amplitude of the received signal based on at least one prior amplitude of the received signal. The method also can include subtracting the amplitude from the average amplitude to obtain an amplitude residual. The method also can include, based upon an absolute value of the amplitude residual being less than or equal to a first threshold, inputting the received signal into an interference suppression algorithm so as to generate a first output including the desired signal with reduced contribution from the interference signal.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: September 28, 2021
    Assignee: The Aerospace Corporation
    Inventors: Philip Dafesh, Phillip Brian Hess
  • Publication number: 20200112333
    Abstract: Under one aspect, a method is provided for processing a received signal, the received signal including a desired signal and an interference signal that spectrally overlaps the desired signal. The method can include obtaining an amplitude of the received signal. The method also can include obtaining an average amplitude of the received signal based on at least one prior amplitude of the received signal. The method also can include subtracting the amplitude from the average amplitude to obtain an amplitude residual. The method also can include, based upon an absolute value of the amplitude residual being less than or equal to a first threshold, inputting the received signal into an interference suppression algorithm so as to generate a first output including the desired signal with reduced contribution from the interference signal.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 9, 2020
    Applicant: The Aerospace Corporation
    Inventors: Philip DAFESH, Phillip Brian HESS
  • Patent number: 10574288
    Abstract: Under one aspect, a method is provided for processing a received signal, the received signal including a desired signal and an interference signal that spectrally overlaps the desired signal. The method can include obtaining an amplitude of the received signal. The method also can include obtaining an average amplitude of the received signal based on at least one prior amplitude of the received signal. The method also can include subtracting the amplitude from the average amplitude to obtain an amplitude residual. The method also can include, based upon an absolute value of the amplitude residual being less than or equal to a first threshold, inputting the received signal into an interference suppression algorithm so as to generate a first output including the desired signal with reduced contribution from the interference signal.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: February 25, 2020
    Assignee: The Aerospace Corporation
    Inventors: Philip Dafesh, Phillip Brian Hess
  • Patent number: 10340962
    Abstract: Under one aspect, a method for reducing interference in a received signal can include splitting a received signal into a first portion and a second portion, the received signal comprising a desired signal and an interference signal that spectrally overlaps the desired signal. The method also can include estimating an amplitude A(t) of the first portion as a function of time. The method also can include suppressing at least a portion of the interference signal in the estimated amplitude A(t) to generate an interference suppressed amplitude A?(t). The method also can include delaying the second portion by an amount of time corresponding to the estimation and suppression. The method also can include multiplying the interference suppressed amplitude A?(t) by the delayed second portion to obtain an output having reduced contribution from the interference signal.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: July 2, 2019
    Assignee: The Aerospace Corporation
    Inventors: Alexander C. Utter, Philip Dafesh, Phillip Brian Hess
  • Publication number: 20180131403
    Abstract: Under one aspect, a method is provided for processing a received signal, the received signal including a desired signal and an interference signal that spectrally overlaps the desired signal. The method can include obtaining an amplitude of the received signal. The method also can include obtaining an average amplitude of the received signal based on at least one prior amplitude of the received signal. The method also can include subtracting the amplitude from the average amplitude to obtain an amplitude residual. The method also can include, based upon an absolute value of the amplitude residual being less than or equal to a first threshold, inputting the received signal into an interference suppression algorithm so as to generate a first output including the desired signal with reduced contribution from the interference signal.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 10, 2018
    Inventors: Philip Dafesh, Phillip Brian Hess
  • Patent number: 9923598
    Abstract: Under one aspect, a method is provided for processing a received signal, the received signal including a desired signal and an interference signal that spectrally overlaps the desired signal. The method can include obtaining an amplitude of the received signal. The method also can include obtaining an average amplitude of the received signal based on at least one prior amplitude of the received signal. The method also can include subtracting the amplitude from the average amplitude to obtain an amplitude residual. The method also can include, based upon an absolute value of the amplitude residual being less than or equal to a first threshold, inputting the received signal into an interference suppression algorithm so as to generate a first output including the desired signal with reduced contribution from the interference signal.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: March 20, 2018
    Assignee: The Aerospace Corporation
    Inventors: Philip Dafesh, Phillip Brian Hess
  • Publication number: 20170324434
    Abstract: Under one aspect, a method for reducing interference in a received signal can include splitting a received signal into a first portion and a second portion, the received signal comprising a desired signal and an interference signal that spectrally overlaps the desired signal. The method also can include estimating an amplitude A(t) of the first portion as a function of time. The method also can include suppressing at least a portion of the interference signal in the estimated amplitude A(t) to generate an interference suppressed amplitude A?(t). The method also can include delaying the second portion by an amount of time corresponding to the estimation and suppression. The method also can include multiplying the interference suppressed amplitude A?(t) by the delayed second portion to obtain an output having reduced contribution from the interference signal.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 9, 2017
    Inventors: Alexander C. Utter, Philip Dafesh, Phillip Brian Hess
  • Publication number: 20170187418
    Abstract: Under one aspect, a method is provided for processing a received signal, the received signal including a desired signal and an interference signal that spectrally overlaps the desired signal. The method can include obtaining an amplitude of the received signal. The method also can include obtaining an average amplitude of the received signal based on at least one prior amplitude of the received signal. The method also can include subtracting the amplitude from the average amplitude to obtain an amplitude residual. The method also can include, based upon an absolute value of the amplitude residual being less than or equal to a first threshold, inputting the received signal into an interference suppression algorithm so as to generate a first output including the desired signal with reduced contribution from the interference signal.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Inventors: Philip Dafesh, Phillip Brian Hess
  • Patent number: 9654158
    Abstract: Under one aspect, a method is provided for processing a received signal, the received signal including a desired signal and an interference signal that spectrally overlaps the desired signal. The method can include obtaining an amplitude of the received signal. The method also can include obtaining an average amplitude of the received signal based on at least one prior amplitude of the received signal. The method also can include subtracting the amplitude from the average amplitude to obtain an amplitude residual. The method also can include, based upon an absolute value of the amplitude residual being less than or equal to a first threshold, inputting the received signal into an interference suppression algorithm so as to generate a first output including the desired signal with reduced contribution from the interference signal.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: May 16, 2017
    Assignee: The Aerospace Corporation
    Inventors: Philip Dafesh, Phillip Brian Hess
  • Publication number: 20170111069
    Abstract: Under one aspect, a method is provided for processing a received signal, the received signal including a desired signal and an interference signal that spectrally overlaps the desired signal. The method can include obtaining an amplitude of the received signal. The method also can include obtaining an average amplitude of the received signal based on at least one prior amplitude of the received signal. The method also can include subtracting the amplitude from the average amplitude to obtain an amplitude residual. The method also can include, based upon an absolute value of the amplitude residual being less than or equal to a first threshold, inputting the received signal into an interference suppression algorithm so as to generate a first output including the desired signal with reduced contribution from the interference signal.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 20, 2017
    Inventors: Philip Dafesh, Phillip Brian Hess
  • Patent number: 9391654
    Abstract: Systems and methods are provided for processing a time-domain signal in rectangular coordinates. The signal can include a low power desired signal and a high power, approximately constant envelope interference signal that spectrally overlaps the desired signal. A rectangular to polar converter can obtain magnitude and phase of the time-domain signal in polar coordinates. An interference estimator can estimate a magnitude of the interference signal based on the magnitude of the time-domain signal in polar coordinates. A subtractor can obtain a difference magnitude in polar coordinates based on the magnitude of the time-domain signal and the estimated magnitude of the interference signal in polar coordinates. A polar to rectangular converter can obtain the desired signal with reduced power of the interference signal based on the difference magnitude and phase of the time-domain signal in polar coordinates.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 12, 2016
    Assignee: The Aerospace Corporation
    Inventors: Peter S. Wyckoff, Philip Dafesh
  • Publication number: 20160080016
    Abstract: Systems and methods are provided for processing a time-domain signal in rectangular coordinates. The signal can include a low power desired signal and a high power, approximately constant envelope interference signal that spectrally overlaps the desired signal. A rectangular to polar converter can obtain magnitude and phase of the time-domain signal in polar coordinates. An interference estimator can estimate a magnitude of the interference signal based on the magnitude of the time-domain signal in polar coordinates. A subtractor can obtain a difference magnitude in polar coordinates based on the magnitude of the time-domain signal and the estimated magnitude of the interference signal in polar coordinates. A polar to rectangular converter can obtain the desired signal with reduced power of the interference signal based on the difference magnitude and phase of the time-domain signal in polar coordinates.
    Type: Application
    Filed: October 20, 2015
    Publication date: March 17, 2016
    Inventors: Peter S. Wyckoff, Philip Dafesh