Patents by Inventor Philip E. Eggers

Philip E. Eggers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6770071
    Abstract: The present invention provides systems, apparatus and methods for selectively applying electrical energy to body tissue in order to, ablate, contract, coagulate, or otherwise modify a tissue or organ of a patients. An electrosurgical apparatus includes an electrode support bearing an active electrode in the form of a plasma blade or hook having an active edge and first and second blade sides. The active edge is adapted for severing a target tissue via localized molecular dissociation of tissue components. The first and second blade sides are adapted for engaging against, and coagulating, the severed tissue. s. A method of the present invention comprises positioning an electrosurgical probe adjacent to the target tissue so that a blade- or hook-like active electrode is brought into at least close proximity to the target tissue in the presence of an electrically conductive fluid.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: August 3, 2004
    Assignee: Arthrocare Corporation
    Inventors: Jean Woloszko, Craig Tsuji, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6772012
    Abstract: Systems, apparatus, and methods for treating spinal tissue and other body structures in open and endoscopic spine surgery to relieve symptoms, such as neck or back pain. In particular, the present invention provides methods for the controlled heating of various tissues in or around the vertebral column, including various interspinous tissues, such that spinal ligaments and cartilage surrounding the vertebrae and the facet joints are shrunk or tightened to stabilize the vertebral column of a patient. Thermal energy is applied to the target tissue in a subablation mode of an electrosurgical system to cause shrinkage of the tissue, thereby stiffening the interspinous tissue and stabilizing the vertebral column. In an exemplary embodiment, a high frequency RF voltage can be applied between one or more active electrode(s) and one or more return electrode(s) to heat a target interspinous tissue to within a temperature range at which irreversible shrinkage of the tissue occurs.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: August 3, 2004
    Assignee: ArthroCare Corporation
    Inventors: Olivier Ricart, Jean Woloszko, David C. Hovda, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6763836
    Abstract: Systems, apparatus, and methods are provided for promoting blood flow to a target tissue. In one variation, the invention involves creating a pattern of voids in connective tissue, or through a tissue having sparse vascularity, such as a tendon or a meniscus, in order to increase blood flow within the tissue. This also includes using a template device to assist in the creation of the pattern of voids. Also included is an electrosurgical device with a self-contained fluid supply for providing conductive fluid to the target tissue or to active electrodes of the device.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: July 20, 2004
    Assignee: Arthrocare Corporation
    Inventors: James P. Tasto, Jean Woloszko, Michael A. Baker, James L. Pacek, Philip E. Eggers, Hira V. Thapliyal
  • Publication number: 20040122494
    Abstract: Method, system and apparatus for monitoring target tissue temperatures wherein temperature sensors are configured as passive resonant circuits each, with a unique resonating signature at monitoring temperatures extending below a select temperature setpoint. The resonant circuits are configured with an inductor component formed of windings about a ferrite core having a Curie temperature characteristic corresponding with a desired temperature setpoint. By selecting inductor winding turns and capacitance values, unique resonant center frequencies are detectable. Temperature monitoring can be carried out with implants at lower threshold and upper limit temperature responses. Additionally, the lower threshold sensors may be combined with auto-regulated heater implants having Curie transitions at upper temperature limits.
    Type: Application
    Filed: December 11, 2003
    Publication date: June 24, 2004
    Inventors: Philip E. Eggers, John L. Ridihalgh, Mark Mayerchak, Gary Altman
  • Patent number: 6749604
    Abstract: A bi-polar electrocautery needle comprising an inner electrode on outer electrode and recoverable insulating-locking member for insulting the electrode from one another and locking them into relative position to one another. And the method of making the bi-polar electrocautery needle in accordance with this invention, the steps including: expanding recoverable dielectric material over an inner electrode; and recovering the material between the electrodes for insulating and locking the electrodes into relative position with one another.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: June 15, 2004
    Assignee: Arthrocare Corporation
    Inventors: Philip E. Eggers, Hira V Thapliyal
  • Patent number: 6740079
    Abstract: An electrosurgical generator which provides a constant voltage and variable power output particularly suited for cutting arc formation at an active electrode which exhibits a dynamic active surface area of varying geometry. Essentially constant voltage-based control is achieved through the utilization of a d.c. link voltage the level of which functions to establish the amplitude of the output of an RF resonant inverter. A dual loop feedback control is described wherein output voltage based control signals are slowly introduced at low gain, while link voltage motor-based controls are comparatively rapidly applied. Enhanced development of a controlling d.c. link voltage is achieved through the utilization of an input network incorporating a power factor correction stage.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: May 25, 2004
    Assignee: Neothermia Corporation
    Inventors: Philip E. Eggers, Andrew R. Eggers, Eric A. Eggers, John Kociecki
  • Publication number: 20040087937
    Abstract: An electrosurgical probe (10) comprises a shaft (13) having an electrode array (58) at its distal end and a connector (19) at its proximal end for coupling the electrode array to a high frequency power supply (28). The shaft includes a return electrode (56) recessed from its distal end and enclosed within an insulating jacket (18). The return electrode defines an inner passage (83) electrically connected to both the return electrode and the electrode array for passage of an electrically conducting liquid (50). By applying high frequency voltage to the electrode array and the return electrode, the electrically conducting liquid generates a current flow path between the return electrode and the electrode array so that target tissue may be cut or ablated. The probe is particularly useful in dry environments, such as the mouth or abdominal cavity, because the electrically conducting liquid provides the necessary return current path between the active and return electrodes.
    Type: Application
    Filed: June 24, 2003
    Publication date: May 6, 2004
    Applicant: ArthroCare Corporation
    Inventors: Philip E. Eggers, Hira V. Thapliyal
  • Publication number: 20040087939
    Abstract: An electrosurgical probe comprises a shaft having an electrode array (12) at its distal end and a connector at its proximal end. The array (12) includes a plurality of isolated electrode terminals, and an electrosurgical power supply (28) is provided with a multiplicity of independently limited or controlled current sources and a connector. The electrosurgical probe and the power supply may be connected through their respective connectors so that the independent current sources are connected to individual electric terminals. By applying very high frequency electrical energy to the electrode array, target tissue may be cut or ablated while heat dissipation through low impedance paths, such as blood and normal saline, will be minimized.
    Type: Application
    Filed: July 16, 2003
    Publication date: May 6, 2004
    Applicant: ArthroCare Corporation
    Inventors: Philip E. Eggers, Hira V. Thapliyal
  • Patent number: 6726684
    Abstract: Methods and apparatus for selectively applying electrical energy to a target location within a patient's body, particularly including tissue in the spine. In a method of the invention high frequency (RF) electrical energy is applied to one or more active electrodes on an electrosurgical probe in the presence of an electrically conductive fluid to remove, contract or otherwise modify the structure of tissue targeted for treatment. In one aspect, a dura mater and spinal cord are insulated from the electrical energy by an insulator positioned on a non-active side of the probe. In another aspect, a plasma is aggressively formed in the electrically conductive fluid by delivering a conductive fluid to a distal end portion of the probe and aspirating the fluid from a location proximal of the return electrode.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: April 27, 2004
    Assignee: ArthroCare Corporation
    Inventors: Jean Woloszko, David C. Hovda, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6719754
    Abstract: Systems and methods are provided for removing adipose or fatty tissue underlying a patient's epidermis is disclosed (e.g., liposuction, abdominoplasty, and the like). The method includes positioning one or more active electrode(s) and one or more return electrode(s) in close proximity to a target region of fatty tissue. A high frequency voltage difference is applied between the active and return electrodes, and the fatty tissue or fragments of the fatty tissue are aspirated from the target region. The high frequency voltage either softens the fatty tissue or completely removes at least a portion of the tissue. In both embodiments, the remaining fatty tissue is more readily detached from the adjacent tissue in the absence of energy, and less mechanical force is required for removal. The bipolar configuration of the present invention controls the flow of current to the immediate region around the distal end of the probe, which minimizes tissue necrosis and the conduction of current through the patient.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: April 13, 2004
    Assignee: ArthroCare Corporation
    Inventors: Ronald A. Underwood, Stephen M. Brunell, Michael A. Baker, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6712811
    Abstract: The present invention provides systems and methods for selectively applying electrical energy to a target location within of a patient's body, particularly including tissue in the spine. The present invention applies high frequency (RF) electrical energy to one or more electrode terminals in the presence of electrically conductive fluid to remove, contract or otherwise modify the structure of tissue structures. In one aspect of the invention, a method is provided for treating herniated discs within a patient's spine by applying sufficient electrical energy to the disc tissue to reduce a volume of the disc, thereby relieving pressure on a spinal nerve. In one embodiment, the high frequency voltage is sufficient to ablate a portion of the nucleus pulposis, either the extruded portion outside of the annulus or a portion or all of the pulposis within the annulus.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: March 30, 2004
    Assignee: Arthrocare Corporation
    Inventors: Ronald A. Underwood, Terry S. Davison, Hira V. Thapliyal, Philip E. Eggers
  • Publication number: 20040030328
    Abstract: An electrosurgical generator which provides a constant power output particularly suited for cutting arc formation at an active electrode which exhibits a dynamic active surface area of varying geometry. Essentially constant power-based control is achieved through the utilization of a d.c. link voltage the level of which functions to establish the amplitude of the output of an RF resonant inverter. A dual loop feedback control is described wherein output power based control signals are slowly introduced at low gain, while link voltage based controls are comparatively rapidly applied. Enhanced development of a controlling d.c. link voltage is achieved through the utilization of an input network incorporating a power factor correction stage.
    Type: Application
    Filed: August 1, 2003
    Publication date: February 12, 2004
    Inventors: Philip E. Eggers, John Kociecki, Mark A. Mayerchak
  • Publication number: 20040024396
    Abstract: Method, system and apparatus for carrying out electrosurgical procedures interstitially. Elevated temperature fluid such as steam generated by an instrument born electrosurgical cutting arc is evacuated through an intake port located adjacent the cutting electrode. Instrument cannula surface heating caused by transport of the heated fluid is isolated. Such thermal isolation is provided by a thermal shield which may be configured as an enveloping sheath.
    Type: Application
    Filed: July 30, 2003
    Publication date: February 5, 2004
    Inventor: Philip E. Eggers
  • Publication number: 20040024399
    Abstract: Apparatus and methods for treating an intervertebral disc by ablation of disc tissue. A method of the invention includes positioning at least one active electrode within the intervertebral disc, and applying at least a first high frequency voltage between the active electrode(s) and one or more return electrode(s), wherein the volume of the nucleus pulposus is decreased, pressure exerted by the nucleus pulposus on the annulus fibrosus is reduced, and discogenic pain of a patient is alleviated. In other embodiments, a curved or steerable probe is guided to a specific target site within a disc to be treated, and the disc tissue at the target site is ablated by application of at least a first high frequency voltage between the active electrode(s) and one or more return electrode(s). A method of making an electrosurgical probe is also disclosed.
    Type: Application
    Filed: July 3, 2003
    Publication date: February 5, 2004
    Applicant: ArthroCare Corporation
    Inventors: Lewis Sharps, David C. Hovda, Jean Woloszko, Hira V. Thapliyal, Philip E. Eggers
  • Patent number: 6659106
    Abstract: The present invention provides systems and methods for selectively applying electrical energy to a target location within the head and neck of a patient's body, particularly including tissue in the ear, nose and throat. In one aspect, a method is provided for reducing the volume of enlarge swollen tissue in the patient's nose, such as swollen nasal tissue, mucus membranes, turbinates, polyps, neoplasms, cartilage (e.g., the nasal septum) or the like. In particular, the turbinates are treated by positioning one or more electrode terminal(s) adjacent to the turbinates, and delivering electrically conductive fluid, such as isotonic saline, to the nasal cavity to substantially surround the electrode terminal(s) with the fluid.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: December 9, 2003
    Assignee: ArthroCare Corporation
    Inventors: David C. Hovda, Hira V. Thapliyal, Philip E. Eggers, Maria B. Ellsberry
  • Publication number: 20030225401
    Abstract: Method for carrying out the recovery of an intact volume of tissue wherein a delivery cannula tip is positioned in confronting adjacency with the volume of tissue to be recovered. The electrosurgical generator employed to form an arc at a capture component extending from the tip is configured having a resistance-power profile which permits recovery of the specimen without excessive thermal artifact while providing sufficient power to sustain a cutting arc. For the recovery procedure, a local anesthetic employing a diluent which exhibits a higher resistivity is utilized and the method for deploying the capture component involves an intermittent formation of a cutting arc with capture component actuation interspersed with pauses of duration effective to evacuate any accumulation or pockets of local anesthetic solution encountered by the cutting electrodes.
    Type: Application
    Filed: September 13, 2002
    Publication date: December 4, 2003
    Inventors: Philip E. Eggers, Michael W. Jopling
  • Publication number: 20030216726
    Abstract: A system and method for surface tissue ablation on the patient's outer skin, such as the epidermis or the underlying dermis. An electrosurgical probe (130) comprises a shaft (132) having an array of active electrodes (136) on its distal tip and a connector (134) at its proximal end for coupling the electrode array to a high frequency power supply. An electrically conducting liquid is directed along a fluid flow path (142) past a return electrode surface (138) to the target site to provide a current flow path between the target site and the return electrode. High frequency voltage is then applied to the active and return electrodes so that an electric current flows from the active electrode, through a layer of vapor formed at the tip of the electrode, and to the return electrode through the current flow path provided by the electrically conducting liquid.
    Type: Application
    Filed: March 20, 2003
    Publication date: November 20, 2003
    Applicant: ArthroCare Corporation
    Inventors: Philip E. Eggers, Hira V. Thapliyal
  • Publication number: 20030212395
    Abstract: Methods and apparatus for selectively applying electrical energy to a target location within a patient's body, particularly including tissue in the spine. In a method of the invention high frequency (RF) electrical energy is applied to one or more active electrodes on an electrosurgical probe in the presence of an electrically conductive fluid to remove, contract or otherwise modify the structure of tissue targeted for treatment. In one aspect, a dura mater and spinal cord are insulated from the electrical energy by an insulator positioned on a non-active side of the probe. In another aspect, a plasma is aggressively formed in the electrically conductive fluid by delivering a conductive fluid to a distal end portion of the probe and aspirating the fluid from a location proximal of the return electrode.
    Type: Application
    Filed: March 10, 2003
    Publication date: November 13, 2003
    Applicant: ArthroCare Corporation
    Inventors: Jean Woloszko, David C. Hovda, Hira V. Thapliyal, Philip E. Eggers
  • Publication number: 20030212396
    Abstract: Systems and methods are provided for removing fatty tissue underlying a patient's epidermis (e.g., blepharoplasty, brow lifts, eyelid shortening procedures, and the like). These methods include positioning one or more active electrode(s) and one or more return electrode(s) in close proximity to a target site on an external body surface of the patient. A high frequency voltage difference is applied between the active and return electrode(s), and the active electrode(s) are translated across the external body surface to create an incision therein. The bipolar configuration controls the flow of current to within and around the distal end of the probe, which minimizes tissue necrosis and the conduction of current through unwanted paths in the patient. The residual heat from the electrical energy also provides simultaneous hemostasis of severed blood vessels, which increases visualization and improves recovery time for the patient.
    Type: Application
    Filed: March 14, 2003
    Publication date: November 13, 2003
    Applicant: ArthroCare Corporation
    Inventors: Andrew R. Eggers, Philip E. Eggers, Ronald A. Underwood, Stephen M. Brunell, Hira V. Thapliyal
  • Publication number: 20030208194
    Abstract: The present invention provides systems and methods for selectively applying electrical energy to a target location within the head and neck of a patient's body, particularly including tissue in the ear, nose and throat. In one aspect, a method is provided for reducing the volume of enlarge swollen tissue in the patient's nose, such as swollen nasal tissue, mucus membranes, turbinates, polyps, neoplasms, cartilage (e.g., the nasal septum) or the like. In particular, the turbinates are treated by positioning one or more electrode terminal(s) adjacent to the turbinates, and delivering electrically conductive fluid, such as isotonic saline, to the nasal cavity to substantially surround the electrode terminal(s) with the fluid.
    Type: Application
    Filed: September 26, 2001
    Publication date: November 6, 2003
    Inventors: David C. Hovda, Hira V. Thapliyal, Philip E. Eggers, Maria B. Ellsberry