Patents by Inventor Philip G. Jessop

Philip G. Jessop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210323844
    Abstract: A forward osmosis system is disclosed which use a polymer switchable between a neutral form and an ionized form. The switchable polymer has a higher osmotic pressure at the ionized form than the neutral form, the ratio between the former and the latter is ?2. There is also disclosed a method for treating the polymer such that the ratio is improved. Use of polymers for forward osmosis is also disclosed.
    Type: Application
    Filed: August 23, 2019
    Publication date: October 21, 2021
    Applicants: Queen's University at Kingston, Forward Water Technologies
    Inventors: Philip G. Jessop, Michael Cunningham, Pascale Champagne, Sarah Ellis, Ryan Dykeman, Charles Honeyman, Amy Holland, Tobias Robert, Bhanu Mudraboyina
  • Publication number: 20190315637
    Abstract: A method and system for reversibly converting water between an initial ionic strength and an increased ionic strength, using a switchable additive, is described. The disclosed method and system can be used, for example, in distillation-free removal of water from solvents, solutes, or solutions. Following extraction of a solute from a medium by dissolving it in water, the solute can then be isolated from the aqueous solution or “salted-out” by converting the water to a solution having an increased ionic strength. The solute then separates from the increased ionic strength solution as a separate phase. Once the solute is, for example, decanted off, the increased ionic strength aqueous solution can be converted back to water having its original ionic strength and reused. Switching from lower to higher ionic strength is readily achieved using low energy methods such as bubbling with CO2, CS2 or COS.
    Type: Application
    Filed: February 19, 2019
    Publication date: October 17, 2019
    Inventors: Philip G. Jessop, Sean M. Mercer, R. Stephen Brown, Tobias Robert
  • Patent number: 10377647
    Abstract: Methods and systems for use of switchable water, which is capable of reversibly switching between an initial ionic strength and an increased ionic strength, is described. The disclosed methods and systems can be used, for example, in distillation-free removal of water from solvents, solutes, or solutions, desalination, clay settling, viscosity switching, etc. Switching from lower to higher ionic strength is readily achieved using low energy methods such as bubbling with C02, CS2 or COS or treatment with Bronsted acids. Switching from higher to lower ionic strength is readily achieved using low energy methods such as bubbling with air, inert gas, heating, agitating, introducing a vacuum or partial vacuum, or any combination or thereof.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: August 13, 2019
    Assignees: Queen's University at Kingson, Greencentre Canada
    Inventors: Philip G. Jessop, Sean M. Mercer, Tobias Robert, R. Stephen Brown, Timothy James Clark, Brian Ernest Mariampillai, Rui Resendes, Dominik Wechsler
  • Publication number: 20180142117
    Abstract: The present application provides switchable, homogeneous paint composition and methods of painting and/or forming films or coatings using the composition. The composition includes a liquid having an aqueous solution and dissolved acid gas (e.g., carbonated water), and a switchable polymer. The switchable polymer converts from a protonated, water-soluble form in the liquid to a water-insoluble unprotonated form following removal or substantial removal of the liquid and acid gas.
    Type: Application
    Filed: June 6, 2016
    Publication date: May 24, 2018
    Applicants: GREENCENTRE CANADA, QUEEN'S UNIVERSITY AT KINGSTON
    Inventors: Rui RESENDES, Philip G. JESSOP, Michael F. CUNNINGHAM, Bhanu Prakash MUDRABOYINA, Adam Michael OZVALD, Timothy James CLARK, Brian MARIAMPILLAI, Yun YANG, Amy Marie HOLLAND, Charles Howard HONEYMAN
  • Publication number: 20160244548
    Abstract: The present application provides a composite material that comprises a solid and solid-supported non-polymeric switchable moiety, wherein the switchable moiety comprises a functional group that is switchable between a first form and a second form, said first form being neutral and hydrophobic, and said second form being ionized and hydrophilic. The composite material converts to, or is maintained in, said second form when the switchable moiety is exposed to CO2 at amounts sufficient to maintain the ionized form. The composite material converts to, or is maintained in, said first form when CO2 is removed or reduced to an amount insufficient to maintain the ionized form. CO2 is removed or reduced by exposing the composite material to heat and/or a flushing inert gas such as N2, Ar, or air. Envisioned uses of these composite materials includes removing water from non-aqueous solvents, removing water vapour from gaseous mixtures, and cleaning industrial reaction vessels and/or pipelines.
    Type: Application
    Filed: September 18, 2014
    Publication date: August 25, 2016
    Applicants: Queen's University at Kingston, GreenCentre Canada
    Inventors: Kyle J. Boniface, Timothy James Clark, Michael F. Cunningham, Philip G. Jessop, Brian Ernest Mariampillai, Sean M. Mercer, Rui Resendes, Tobias Robert
  • Publication number: 20150240051
    Abstract: A solvent that reversibly converts from a hydrophobic liquid form to hydrophilic liquid form upon contact with water and a selected trigger, e.g., contact with CO2, is described. The hydrophilic liquid form is readily converted back to the hydrophobic liquid form and water. The hydrophobic liquid is an amidine or amine. The hydrophilic liquid form comprises an amidinium salt or an ammonium salt.
    Type: Application
    Filed: October 24, 2014
    Publication date: August 27, 2015
    Inventors: Philip G. JESSOP, Lam N. PHAN, Andrew J. CARRIER, Rui RESENDES, Dominik WECHSLER
  • Publication number: 20150190772
    Abstract: The present application provides a micellar composition having switchable viscosity.
    Type: Application
    Filed: August 2, 2013
    Publication date: July 9, 2015
    Applicant: QUEEN'S UNIVERSITY AT KINGSTON
    Inventors: Philip G. Jessop, Michael F. Cunningham, Xin Su
  • Patent number: 8900444
    Abstract: A solvent that reversibly converts from a hydrophobic liquid form to hydrophilic liquid form upon contact with water and a selected trigger, e.g., contact with CO2, is described. The hydrophilic liquid form is readily converted back to the hydrophobic liquid form and water. The hydrophobic liquid is an amidine or amine. The hydrophilic liquid form comprises an amidinium salt or an ammonium salt.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: December 2, 2014
    Assignees: Queen's University at Kingston, GreenCentre Canada
    Inventors: Philip G. Jessop, Lam N. Phan, Andrew J. Carrier, Rui Resendes, Dominik Wechsler
  • Publication number: 20140235908
    Abstract: A solvent that reversibly converts from a hydrophobic liquid form to hydrophilic liquid form upon contact with water and a selected trigger, e.g., contact with CO2, is described. The hydrophilic liquid form is readily converted back to the hydrophobic liquid form and water. The hydrophobic liquid is an amidine or amine. The hydrophilic liquid form comprises an amidinium salt or an ammonium salt.
    Type: Application
    Filed: November 8, 2013
    Publication date: August 21, 2014
    Applicants: GreenCentre Canada, Queen's University at Kingston
    Inventors: Philip G. JESSOP, Lam N. Phan, Andrew J. Carrier, Rui Resendes, Dominik Wechsler
  • Patent number: 8710265
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 29, 2014
    Assignees: Queen's University at Kingston, Georgia Tech Research Corporation
    Inventors: Philip G. Jessop, Charles A. Eckert, Charles L. Liotta, David J. Heldebrant
  • Publication number: 20140076810
    Abstract: Methods and systems for use of switchable water, which is capable of reversibly switching between an initial ionic strength and an increased ionic strength, is described. The disclosed methods and systems can be used, for example, in distillation-free removal of water from solvents, solutes, or solutions, desalination, clay settling, viscosity switching, etc. Switching from lower to higher ionic strength is readily achieved using low energy methods such as bubbling with C02, CS2 or COS or treatment with Bronsted acids. Switching from higher to lower ionic strength is readily achieved using low energy methods such as bubbling with air, inert gas, heating, agitating, introducing a vacuum or partial vacuum, or any combination or thereof.
    Type: Application
    Filed: December 15, 2011
    Publication date: March 20, 2014
    Applicants: Greencentre Canaga, Queens's University
    Inventors: Philip G. Jessop, Sean M. Mercer, Tobias Robert, R. Stephen Brown, Timothy James Clark, Brian Ernest Mariampillai, Rui Resendes, Dominik Wechsler
  • Publication number: 20130327989
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 12, 2013
    Applicants: GEORGIA TECH RESEARCH CORPORATION, QUEEN'S UNIVERSITY AT KINGSTON
    Inventors: Philip G. JESSOP, Charles A. ECKERT, Charles L. LIOTTA, David J. HELDEBRANT
  • Patent number: 8580124
    Abstract: A solvent that reversibly converts from a hydrophobic liquid form to hydrophilic liquid form upon contact with water and a selected trigger, e.g., contact with CO2, is described. The hydrophilic liquid form is readily converted back to the hydrophobic liquid form and water. The hydrophobic liquid is an amidine or amine. The hydrophilic liquid form comprises an amidinium salt or an ammonium salt.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 12, 2013
    Assignees: Queen's University at Kingston, GreenCentre Canada
    Inventors: Philip G. Jessop, Lam N. Phan, Andrew J. Carrier, Rui Resendes, Dominik Wechsler
  • Patent number: 8513464
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 20, 2013
    Assignees: Georgia Tech Research Corporation, Queen's University at Kingston
    Inventors: Philip G. Jessop, Charles A. Eckert, Charles L. Liotta, David J. Heldebrant
  • Publication number: 20130105377
    Abstract: A method and system for reversibly converting water between an initial ionic strength and an increased ionic strength, using a switchable additive, is described. The disclosed method and system can be used, for example, in distillation-free removal of water from solvents, solutes, or solutions. Following extraction of a solute from a medium by dissolving it in water, the solute can then be isolated from the aqueous solution or “salted-out” by converting the water to a solution having an increased ionic strength. The solute then separates from the increased ionic strength solution as a separate phase. Once the solute is, for example, decanted off, the increased ionic strength aqueous solution can be converted back to water having its original ionic strength and reused. Switching from lower to higher ionic strength is readily achieved using low energy methods such as bubbling with CO2, CS2 or COS.
    Type: Application
    Filed: February 10, 2011
    Publication date: May 2, 2013
    Applicant: Queen's University at Kingston
    Inventors: Philip G. Jessop, Sean M. Mercer, R. Stephen Brown, Tobias Robert
  • Publication number: 20130087072
    Abstract: Reversible switchable surfactants are provided. A surfactant is the salt of an amidine or guanidine having at least one R group that is a hydrophobic moiety selected from the group consisting of higher aliphatic moiety, higher siloxyl moiety, higher aliphatic/siloxyl moiety, aliphatic/aryl moiety, siloxyl/aryl moiety, and aliphatic/siloxyl/aryl moiety. The other R groups are smaller moieties such as H, C1 to C4 aliphatic or the like. The surfactant is turned on by a gas that liberates hydrogen ions, such as, for example, carbon dioxide, which liberates hydrogen ions in the presence of water. The surfactant is turned off by exposure to a flushing gas and/or heating. When “on” the surfactants are useful to stabilize emulsions, and when “off” they are useful to separate immiscible liquids or a liquid and a solid. The surfactants find uses in polymerization and in the oil industry.
    Type: Application
    Filed: September 14, 2012
    Publication date: April 11, 2013
    Applicant: QUEEN'S UNIVERSITY AT KINGSTON
    Inventor: Philip G. Jessop
  • Patent number: 8283385
    Abstract: Reversible switchable surfactants are provided. A surfactant is the salt of an amidine or guanidine: having at least one R group that is a hydrophobic moiety selected from the group consisting of higher aliphatic moiety, higher siloxyl moiety, higher aliphatic/siloxyl moiety, aliphatic/aryl moiety, siloxyl/aryl moiety, and aliphatic/siloxyl/aryl moiety. The other R groups are smaller moieties such as H, C1 to C4 aliphatic or the like. The surfactant is turned on by a gas that liberates hydrogen ions, such as, for example, carbon dioxide, which liberates hydrogen ions in the presence of water. The surfactant is turned off by exposure to a flushing gas and/or heating. When “on” the surfactants are useful to stabilize emulsions, and when “off” they are useful to separate immiscible liquids or a liquid and a solid. The surfactants find uses in polymerization and in the oil industry.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: October 9, 2012
    Assignee: Queen's University at Kingston
    Inventor: Philip G. Jessop
  • Publication number: 20120116076
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Application
    Filed: June 29, 2011
    Publication date: May 10, 2012
    Applicants: GEORGIA TECH RESEARCH CORPORATION, QUEEN'S UNIVERSITY AT KINGSTON
    Inventors: Philip G. JESSOP, Charles A. ECKERT, Charles L. LIOTTA, David J. HELDEBRANT
  • Publication number: 20110274994
    Abstract: Combinations of catalyst and compound are described that are suitable for use in a thermally regenerative fuel cell. Such combinations offer greater than 99% selectivity and accordingly they cycle through a reversible dehydrogenation process with substantially no loss due to byproduct formation. Combinations of secondary benzylic alcohols and Pd/SiO2 catalysts offer levels of by-products that are undetectable by NMR and GC analysis. With such TRFC, thermal energy can be converted into electric energy in a moving vehicle without the requirement of storage of H2, and its safety issues. Instead, a catalytic amount of H2 is cycled through the system and used to generate electric energy.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 10, 2011
    Inventors: Andrew J. Carrier, Boyd R. Davis, Philip G. Jessop, Keith Hao-Kiet Huynh
  • Publication number: 20110257334
    Abstract: A solvent that reversibly converts from a hydrophobic liquid form to hydrophilic liquid form upon contact with water and a selected trigger, e.g., contact with CO2, is described. The hydrophilic liquid form is readily converted back to the hydrophobic liquid form and water. The hydrophobic liquid is an amidine or amine. The hydrophilic liquid form comprises an amidinium salt or an ammonium salt.
    Type: Application
    Filed: October 28, 2010
    Publication date: October 20, 2011
    Inventors: Philip G. Jessop, Lam N. Phan, Andrew J. Carrier, Rui Resendes, Dominik Wechsler