Patents by Inventor Philip H. Bowles
Philip H. Bowles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10442685Abstract: Microelectronic packages having hermetic cavities are provided, as are methods for producing such packages. In one embodiment, the microelectronic package includes a sensor die having first and second Microelectromechanical Systems (MEMS) transducer structures formed thereon. First and second cap pieces are coupled to the sensor die by, for example, direct or indirect bonding. A first hermetic cavity encloses the first MEMS transducer structure and is at least partially defined by the first cap piece and the sensor die. Similarly, a second hermetic cavity encloses the second MEMS transducer structure and at least partially defined by the second cap piece and the sensor die. A vent hole is fluidly coupled to the first hermetic cavity and is sealed by the second cap piece.Type: GrantFiled: March 31, 2014Date of Patent: October 15, 2019Assignee: NXP USA, Inc.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 10053359Abstract: Microelectronic packages and methods for producing microelectronic packages are provided. In one embodiment, the method includes bonding a first Microelectromechanical Systems (MEMS) die having a first MEMS transducer structure thereon to a cap piece. The first MEMS die and cap piece are bonded such that a first hermetically-sealed cavity is formed enclosing the first MEMS transducer. A second MEMS die having a second MEMS transducer structure thereon is further bonded to one of the cap piece and the second MEMS die. The second MEMS die and the cap piece are bonded such that a second hermetically-sealed cavity is formed enclosing the second MEMS transducer. The second hermetically-sealed cavity contains a different internal pressure than does the first hermetically-sealed cavity.Type: GrantFiled: October 20, 2016Date of Patent: August 21, 2018Assignee: NXP USA, Inc.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 9891244Abstract: Methods for fabricating microelectronic packages and microelectronic packages having split gyroscope structures are provided. In one embodiment, the microelectronic package includes a first Microelectromechanical Systems (MEMS) die having a first MEMS gyroscope structure thereon. The microelectronic package further includes a second MEMS die, which has a second MEMS gyroscope structure thereon and which is positioned in a stacked relationship with the first MEMS die. The first and second MEMS gyroscope structures overlap as taken along a first axis orthogonal to a principal axis of the first MEMS die.Type: GrantFiled: August 15, 2014Date of Patent: February 13, 2018Assignee: NXP USA, Inc.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 9676611Abstract: Sensor device packages and related fabrication methods are provided. An exemplary sensor device package includes a first structure having a sensing arrangement thereon, a second structure having circuitry thereon, and a conductive structure within the first structure and coupled to the circuitry to provide an electrical connection to the circuitry through the first structure. Thus, circuitry on the second structure may be electrically connected to an interface of the sensor device package through the first structure.Type: GrantFiled: October 18, 2013Date of Patent: June 13, 2017Assignee: NXP USA, Inc.Inventors: Stephen R. Hooper, Philip H. Bowles
-
Patent number: 9604844Abstract: Embodiments of a sensor device include a sensor substrate and a first cap substrate attached to the sensor substrate with a first bond material. The first bond material is arranged to define a first device cavity. A second cap substrate is attached to the sensor substrate with a second bond material. The second bond material is arranged to define a second device cavity. The second bond material has a lower bonding temperature than the first bond material. The second cap substrate is further secured to the sensor substrate by an adhesive material disposed between the sensor substrate and the second cap substrate.Type: GrantFiled: July 20, 2015Date of Patent: March 28, 2017Assignee: NXP USA, Inc.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 9499397Abstract: Microelectronic packages and methods for producing microelectronic packages are provided. In one embodiment, the method includes bonding a first Microelectromechanical Systems (MEMS) die having a first MEMS transducer structure thereon to a cap piece. The first MEMS die and cap piece are bonded such that a first hermetically-sealed cavity is formed enclosing the first MEMS transducer. A second MEMS die having a second MEMS transducer structure thereon is further bonded to one of the cap piece and the second MEMS die. The second MEMS die and the cap piece are bonded such that a second hermetically-sealed cavity is formed enclosing the second MEMS transducer. The second hermetically-sealed cavity contains a different internal pressure than does the first hermetically-sealed cavity.Type: GrantFiled: March 31, 2014Date of Patent: November 22, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 9376310Abstract: Methods for fabricating multi-sensor microelectronic packages and multi-sensor microelectronic packages are provided. In one embodiment, the method includes positioning a magnetometer wafer comprised of an array of non-singulated magnetometer die over an accelerometer wafer comprised of an array of non-singulated accelerometer die. The magnetometer wafer is bonded to the accelerometer wafer to produce a bonded wafer stack. The bonded wafer stack is then singulated to yield a plurality of multi-sensor microelectronic packages each including a singulated magnetometer die bonded to a singulated accelerometer die.Type: GrantFiled: July 22, 2015Date of Patent: June 28, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 9365414Abstract: A small area semiconductor device package containing two or more MEMS sensor device die and a controller die for the sensor devices is provided. The controller die is mounted on top of the largest MEMS sensor device die (e.g., a gyroscope) and over a second MEMS sensor device die (e.g., an accelerometer). In one embodiment, the controller die is also mounted on the top of the second MEMS sensor device die. In another embodiment, the controller die overhangs the second MEMS sensor device die, which is of a lesser thickness than the first MEMS sensor device die.Type: GrantFiled: April 21, 2014Date of Patent: June 14, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 9359192Abstract: The various embodiments described herein provide microelectromechanical systems (MEMS) sensor devices and methods of forming the same. In general, the embodiments provide MEMS sensor devices formed with two semiconductor die that are bonded together. Specifically, a sensor die includes at least one MEMS sensor fabricated thereon, such as MEMS gyroscope or MEMS accelerometer. A control-circuit die includes at least one integrated MEMS control circuit formed on an active area of the die. The control-circuit die is bonded to the sensor die with the active area and the integrated MEMS control circuits on the exterior side. The bonding defines and seals a cavity between the two die that encompasses the MEMS sensor and can be used to seal the MEMS sensor in a vacuum.Type: GrantFiled: January 9, 2015Date of Patent: June 7, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Philip H. Bowles, Mamur Chowdhury, Vijay Sarihan
-
Patent number: 9227838Abstract: A method (30) of forming a semiconductor package (20) entails applying (56) an adhesive (64) to a portion (66) of a bonding perimeter (50) of a base (22), with a section (68) of the perimeter (50) being without the adhesive (64). A lid (24) is placed on the base (22) so that a bonding perimeter (62) of the lid (24) abuts the bonding perimeter (50) of the base (22). The lid (24) includes a cavity (25) in which dies (38) mounted to the base (22) are located. A gap (70) is formed without the adhesive (64) at the section (68) between the base (22) and the lid (24). The structure vents from the gap (70) as air inside the cavity (25) expands during heat curing (72). Following heat curing (72), another adhesive (80) is dispensed in the section (68) to close the gap (70) and seal the cavity (25).Type: GrantFiled: October 29, 2014Date of Patent: January 5, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Stephen R. Hooper, Philip H. Bowles
-
Publication number: 20150321907Abstract: Embodiments of a sensor device include a sensor substrate and a first cap substrate attached to the sensor substrate with a first bond material. The first bond material is arranged to define a first device cavity. A second cap substrate is attached to the sensor substrate with a second bond material. The second bond material is arranged to define a second device cavity. The second bond material has a lower bonding temperature than the first bond material. The second cap substrate is further secured to the sensor substrate by an adhesive material disposed between the sensor substrate and the second cap substrate.Type: ApplicationFiled: July 20, 2015Publication date: November 12, 2015Applicant: FREESCALE SEMICONDUCTOR, INC.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 9165886Abstract: A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure. The structure includes a sensor wafer (92) and a cap wafer (94) Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers. One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers to expose the bond pads, forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).Type: GrantFiled: January 9, 2014Date of Patent: October 20, 2015Assignee: FREESCALE SEMICONDUCTOR,INCInventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
-
Patent number: 9108841Abstract: Methods for fabricating multi-sensor microelectronic packages and multi-sensor microelectronic packages are provided. In one embodiment, the method includes positioning a magnetometer wafer comprised of an array of non-singulated magnetometer die over an accelerometer wafer comprised of an array of non-singulated accelerometer die. The magnetometer wafer is bonded to the accelerometer wafer to produce a bonded wafer stack. The bonded wafer stack is then singulated to yield a plurality of multi-sensor microelectronic packages each including a singulated magnetometer die bonded to a singulated accelerometer die.Type: GrantFiled: March 5, 2014Date of Patent: August 18, 2015Assignee: Freescale Semiconductor, Inc.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 9090454Abstract: Embodiments of methods of fabricating a sensor device includes attaching a first wafer to a sensor wafer with a first bond material, and attaching a second wafer to the sensor wafer with a second bond material, the second bond material having a lower bonding temperature than the first bond material. After attaching the second wafer, an opening (e.g., a trench cut) through the second wafer is formed, and an adhesive material is provided through the opening to further secure the second wafer to the sensor wafer. Embodiments of sensor devices formed using such methods include a first device cavity having a first pressure, and a second device cavity having a second pressure.Type: GrantFiled: August 27, 2013Date of Patent: July 28, 2015Assignee: Freescale Semiconductor, Inc.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 9040355Abstract: A method (70) of forming sensor packages (20) entails providing a sensor wafer (74) having sensors (30) formed on a side (26) positioned within areas (34) delineated by bonding perimeters (36), and providing a controller wafer (82) having control circuitry (42) at one side (38) and bonding perimeters (46) on an opposing side (40). The bonding perimeters (46) of the controller wafer (82) are bonded to corresponding bonding perimeters (36) of the sensor wafer (74) to form a stacked wafer structure (48) in which the control circuitry (42) faces outwardly. The controller wafer (82) is sawn to reveal bond pads (32) on the sensor wafer (74) which are wire bonded to corresponding bond pads (44) formed on the same side (38) of the wafer (82) as the control circuitry (42). The structure (48) is encapsulated in packaging material (62) and is singulated to produce the sensor packages (20).Type: GrantFiled: July 11, 2012Date of Patent: May 26, 2015Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
-
Patent number: 9018029Abstract: Embodiments of methods of fabricating a sensor device include attaching first and second die to one another to define first and second cavities in which first and second sensors of the sensor device are disposed, respectively. The second die has an opening in communication with the second cavity. The methods further include obstructing the opening, attaching a third die to the second die. The first cavity is hermetically sealed by attaching the first and second die. The second cavity is hermetically sealed by attaching the third die to the second die.Type: GrantFiled: December 6, 2013Date of Patent: April 28, 2015Assignee: Freescale Semiconductor, Inc.Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Lianjun Liu, Raymond M. Roop
-
Publication number: 20150061044Abstract: Embodiments of methods of fabricating a sensor device includes attaching a first wafer to a sensor wafer with a first bond material, and attaching a second wafer to the sensor wafer with a second bond material, the second bond material having a lower bonding temperature than the first bond material. After attaching the second wafer, an opening (e.g., a trench cut) through the second wafer is formed, and an adhesive material is provided through the opening to further secure the second wafer to the sensor wafer. Embodiments of sensor devices formed using such methods include a first device cavity having a first pressure, and a second device cavity having a second pressure.Type: ApplicationFiled: August 27, 2013Publication date: March 5, 2015Applicant: Freescale Semiconductor, Inc.Inventors: Philip H. Bowles, Stephen R. Hooper
-
Patent number: 8962389Abstract: Embodiments of microelectronic packages and methods for fabricating microelectronic packages are provided. In one embodiment, the fabrication method includes printing a patterned die attach material onto the backside of a wafer including an array of non-singulated microelectronic die each having an interior keep-out area, such as a central keep-out area. The die attach material, such as a B-stage epoxy, is printed onto the wafer in a predetermined pattern such that the die attach material does not encroaching into the interior keep-out areas. The wafer is singulated to produce singulated microelectronic die each including a layer of die attach material. The singulated microelectronic die are then placed onto leadframes or other package substrates with the die attach material contacting the package substrates. The layer of die attach material is then fully cured to adhere an outer peripheral portion of the singulated microelectronic die to its package substrate.Type: GrantFiled: May 30, 2013Date of Patent: February 24, 2015Assignee: Freescale Semiconductor, Inc.Inventors: William C. Stermer, Jr., Philip H. Bowles, Alan J. Magnus
-
Patent number: 8906747Abstract: A method (30) of forming a semiconductor package (20) entails applying (56) an adhesive (64) to a portion (66) of a bonding perimeter (50) of a base (22), with a section (68) of the perimeter (50) being without the adhesive (64). A lid (24) is placed on the base (22) so that a bonding perimeter (62) of the lid (24) abuts the bonding perimeter (50) of the base (22). The lid (24) includes a cavity (25) in which dies (38) mounted to the base (22) are located. A gap (70) is formed without the adhesive (64) at the section (68) between the base (22) and the lid (24). The structure vents from the gap (70) as air inside the cavity (25) expands during heat curing (72). Following heat curing (72), another adhesive (80) is dispensed in the section (68) to close the gap (70) and seal the cavity (25).Type: GrantFiled: May 23, 2012Date of Patent: December 9, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Stephen R. Hooper, Philip H. Bowles
-
Publication number: 20140353772Abstract: Embodiments of microelectronic packages and methods for fabricating microelectronic packages are provided. In one embodiment, the fabrication method includes printing a patterned die attach material onto the backside of a wafer including an array of non-singulated microelectronic die each having an interior keep-out area, such as a central keep-out area. The die attach material, such as a B-stage epoxy, is printed onto the wafer in a predetermined pattern such that the die attach material does not encroaching into the interior keep-out areas. The wafer is singulated to produce singulated microelectronic die each including a layer of die attach material. The singulated microelectronic die are then placed onto leadframes or other package substrates with the die attach material contacting the package substrates. The layer of die attach material is then fully cured to adhere an outer peripheral portion of the singulated microelectronic die to its package substrate.Type: ApplicationFiled: May 30, 2013Publication date: December 4, 2014Inventors: William C. Stermer, JR., Philip H. Bowles, Alan J. Magnus