Patents by Inventor Philip Hammer
Philip Hammer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250054397Abstract: Described are various embodiments of a flight management method and system using same. In one embodiment, a digital flight management system comprises: a digital processing environment comprising instructions to access: flight request data related to a flight plan; aircraft parameter data; a flight risk data source; and geographical data. The instructions are executable to: calculate a predicted flight path; digitally compare the predicted flight path with flight risk data from the flight risk data source to assess a flight risk associated with the predicted flight path; and display via a user interface the predicted fight path in accordance with the flight risk.Type: ApplicationFiled: October 28, 2024Publication date: February 13, 2025Inventors: Bernard Agyekum, Jian Zhong Hu, Alan Gillis, David Balcaen, Markus Hammer, Philip Wyatt
-
Patent number: 8692070Abstract: The present invention relates to transgenic plants that have increased nitrogen use efficiency, stress tolerance, and/or alleviating a limitation such that yield is increased, or a combination of these and that have been transformed using a novel vector construct including a synthetic N-acetyl glutamate kinase (NAGK) gene that modulates nitrogen use in plants. The invention also includes the overexpression and enzymatic characterization of an arginine-insensitive NAGK isolated from a bacterial strain that improves stress tolerance and nitrogen uptake, metabolism or both. In various embodiments, the vector construct includes one or more nucleic acid sequences including SEQ ID NO: 1. The invention also relates to isolated vectors for transforming plants and to antibodies used for detecting transformed plants.Type: GrantFiled: November 1, 2010Date of Patent: April 8, 2014Assignee: Iowa Corn Promotion BoardInventors: James McLaren, Nicholas Duck, Brian Vande Berg, Philip Hammer, Laura Schouten
-
Patent number: 8045473Abstract: Techniques for managing computational load in real-time communications include receiving usage data on a particular node of a packet-switched network. The usage data indicates an amount of computational resources consumed on that particular node by application layer processes for a first type of data packet. It is determined whether this amount exceeds a threshold amount associated with performance degradation. If it is determined that the amount exceeds the threshold, then a message is sent to a different node on the network. The message includes overload state data that indicates the type of data packets and a reduction request. The reduction request indicates a request to reduce an amount of those type data packets that are sent to the particular node in a particular way. These techniques allow application traffic to be diverted under more specific control than approaches that stop all traffic of all data types to the node.Type: GrantFiled: November 28, 2005Date of Patent: October 25, 2011Assignee: Cisco Technology, Inc.Inventor: Michael Philip Hammer
-
Publication number: 20110252503Abstract: The present invention relates to transgenic plants that have increased nitrogen use efficiency, stress tolerance, and/or alleviating a limitation such that yield is increased, or a combination of these and that have been transformed using a novel vector construct including a synthetic N-acetyl glutamate kinase (NAGK) gene that modulates nitrogen use in plants. The invention also includes the overexpression and enzymatic characterization of an arginine-insensitive NAGK isolated from a bacterial strain that improves stress tolerance and nitrogen uptake, metabolism or both. In various embodiments, the vector construct includes one or more nucleic acid sequences including SEQ ID NO: 1. The invention also relates to isolated vectors for transforming plants and to antibodies used for detecting transformed plants.Type: ApplicationFiled: November 1, 2010Publication date: October 13, 2011Applicant: IOWA CORN PROMOTION BOARDInventors: James McLaren, Nicholas Duck, Brian Vande Berg, Philip Hammer, Laura Schouten
-
Publication number: 20080313769Abstract: Compositions and methods for conferring tolerance to glyphosate in bacteria, plants, plant cells, tissues and seeds are provided. Compositions include novel EPSP synthase enzymes and nucleic acid molecules encoding such enzymes, vectors comprising those nucleic acid molecules, and host cells comprising the vectors. The novel proteins comprise at least one sequence domain selected from the domains provided herein. These sequence domains can be used to identify EPSP synthases with glyphosate resistance activity.Type: ApplicationFiled: January 10, 2007Publication date: December 18, 2008Applicant: Athenix CorporationInventors: Brian Carr, Philip Hammer, Todd Hinson, Brian Vande Berg
-
Publication number: 20070169218Abstract: Compositions and methods for conferring tolerance to glyphosate in bacteria, plants, plant cells, tissues and seeds are provided. Compositions include novel EPSP synthase enzymes and nucleic acid molecules encoding such enzymes, vectors comprising those nucleic acid molecules, and host cells comprising the vectors. The novel proteins comprise at least one sequence domain selected from the domains provided herein. These sequence domains can be used to identify EPSP synthases with glyphosate resistance activity.Type: ApplicationFiled: January 10, 2007Publication date: July 19, 2007Applicant: Athenix CorporationInventors: Brian Carr, Philip Hammer, Todd Hinson, Brian Vande Berg
-
Publication number: 20070136840Abstract: Compositions and methods for conferring herbicide resistance or tolerance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include polynucleotides encoding herbicide resistance or tolerance polypeptides, vectors comprising those polynucleotides, and host cells comprising the vectors. The nucleotide sequences of the invention can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated polynucleotides encoding glyphosate resistance or tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated polynucleotides comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, 4, or 6, or the nucleotide sequence set forth in SEQ ID NO:1, 3, or 5.Type: ApplicationFiled: November 29, 2006Publication date: June 14, 2007Applicant: Athenix CorporationInventors: Cheryl Peters, Jill Hinson, Philip Hammer, Brian Vande Berg, Laura Schouten, Brian Carr
-
Publication number: 20070107078Abstract: Compositions and methods for conferring herbicide resistance to plant cells and bacterial cells are provided. The methods comprise transforming the cells with nucleotide sequences encoding herbicide resistance genes. In particular, herbicide resistance is conferred by expression of proteins with homology to decarboxylase enzymes. Compositions comprise transformed plants, plant tissues, and seeds, as well as transformed bacterial cells.Type: ApplicationFiled: October 27, 2006Publication date: May 10, 2007Applicant: Athenix CorporationInventors: Philip Hammer, Todd Hinson, Nicholas Duck, Michael Koziel
-
Publication number: 20070044175Abstract: Compositions and methods for conferring herbicide resistance to plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to glyphosate herbicides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed plants, plant cells, tissues, and seeds. In particular, isolated nucleic acid molecules encoding glyphosate resistance proteins are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2 or the nucleotide sequence set forth in SEQ ID NO:1.Type: ApplicationFiled: August 8, 2006Publication date: February 22, 2007Applicant: Athenix CorporationInventors: Philip Hammer, Nicholas Duck
-
Publication number: 20070004907Abstract: Compositions and methods for conferring herbicide resistance to plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to glyphosate herbicides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed plants, plant cells, tissues, and seeds. In particular, isolated nucleic acid molecules encoding glyphosate resistance proteins are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2 or the nucleotide sequence set forth in SEQ ID NO: 1.Type: ApplicationFiled: September 8, 2006Publication date: January 4, 2007Applicant: Athenix CorporationInventors: Philip Hammer, Nicholas Duck
-
Publication number: 20060277632Abstract: Compositions and methods for producing chitin and chitosan are provided. The compositions comprise genetically modified organisms, including fungi, yeast, bacterial and plant organisms that have been engineered to express heterologous genes involved in chitin and chitosan synthesis. Microorganisms and plants that have been modified for production of chitin and/or chitosan within the vacuole of a cell are encompassed. Methods for production of chitin also comprise culturing the genetically engineered organisms in conditions that allow for chitin production. Further methods include converting the chitin to chitosan by a chemical process. Production of chitosan also comprises culturing organisms that are genetically modified to produce chitosan without the need for chemical modification. Methods for in vitro chitosan production are also encompassed.Type: ApplicationFiled: May 15, 2006Publication date: December 7, 2006Applicant: Athenix CorporationInventors: Brian Carr, Philip Hammer
-
Publication number: 20060253921Abstract: Compositions and methods for conferring tolerance to glyphosate in bacteria, plants, plant cells, tissues and seeds are provided. Compositions include a novel class of EPSPS enzymes, designated Class III, and polynucleotides encoding such enzymes, vectors comprising those polynucleotides, and host cells comprising the vectors. The novel proteins comprise at least one sequence domain selected from the Class III domains provided herein. These sequence domains can be used to identify EPSP synthases with glyphosate resistance activity.Type: ApplicationFiled: April 7, 2006Publication date: November 9, 2006Applicant: Athenix CorporationInventors: Nadine Carozzi, Brian Carr, Philip Hammer
-
Publication number: 20060218662Abstract: The present invention provides compositions and methods for regulating expression of heterologous nucleotide sequences in a plant. Compositions include a novel promoter nucleotide sequence for the gene encoding ubiquitin in Tripsacum dactyloides, as well as vectors, microorganisms, plants and plant cells comprising the promoter nucleotide sequence, or variants and fragments thereof. Methods for expressing a heterologous nucleotide sequence in a plant using the promoter sequences disclosed herein are also provided. The methods comprise stably incorporating into the genome of a plant cell a nucleotide sequence operably linked to the promoter of the present invention and regenerating a stably transformed plant that expresses the nucleotide sequence.Type: ApplicationFiled: March 16, 2006Publication date: September 28, 2006Applicant: Athenix CorporationInventor: Philip Hammer
-
Publication number: 20060150269Abstract: Compositions and methods for conferring herbicide resistance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to glyphosate herbicides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated nucleic acid molecules corresponding to glyphosate resistant nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:3 or the nucleotide sequence set forth in SEQ ID NO:1, 2, or 4.Type: ApplicationFiled: December 20, 2005Publication date: July 6, 2006Applicant: Athenix CorporationInventors: Philip Hammer, Todd Hinson, Amy Shekita
-
Publication number: 20060150270Abstract: Compositions and methods for conferring herbicide resistance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to glyphosate herbicides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated nucleic acid molecules corresponding to glyphosate resistant nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:3 or the nucleotide sequence set forth in SEQ ID NO:1 or 2.Type: ApplicationFiled: December 22, 2005Publication date: July 6, 2006Applicant: Athenix CorporationInventors: Philip Hammer, Todd Hinson
-
Publication number: 20060021093Abstract: Compositions and methods for conferring herbicide resistance to plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to glyphosate herbicides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed plants, plant cells, tissues, and seeds. In particular, isolated nucleic acid molecules corresponding to glyphosate resistant nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding an amino acid sequence shown in SEQ ID NO:3, 6, 8, 11, 19, or 21, or a nucleotide sequence set forth in SEQ ID NO:1, 2, 4, 5, 7, 9, 10, 18, or 20, as well as variants and fragments thereof.Type: ApplicationFiled: July 20, 2005Publication date: January 26, 2006Applicant: Athenix CorporationInventors: Philip Hammer, Todd Hinson, Brian Carr, Nicholas Duck
-
Publication number: 20060021094Abstract: Compositions and methods for conferring herbicide resistance to plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to glyphosate herbicides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed plants, plant cells, tissues, and seeds. In particular, isolated nucleic acid molecules corresponding to glyphosate resistant nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:3 or the nucleotide sequences set forth in SEQ ID NOS:1 and 2.Type: ApplicationFiled: July 20, 2005Publication date: January 26, 2006Applicant: Athenix CorporationInventors: Philip Hammer, Todd Hinson, Nicholas Duck
-
Publication number: 20050204436Abstract: Compositions and methods for conferring herbicide resistance to plant cells and bacterial cells are provided. The methods comprise transforming the cells with nucleotide sequences encoding herbicide resistance genes. In particular, herbicide resistance is conferred by expression of proteins with homology to decarboxylase enzymes. Compositions comprise transformed plants, plant tissues, and seeds, as well as transformed bacterial cells.Type: ApplicationFiled: March 10, 2004Publication date: September 15, 2005Applicant: Athenix CorporationInventors: Philip Hammer, Todd Hinson, Nicholas Duck, Michael Koziel