Patents by Inventor Philip Hsueh

Philip Hsueh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220257897
    Abstract: Embodiments relate to systems and methods for gas delivery for personal medical consumption having safety features. A hydrogen or oxygen gas delivery system herein can include electrolytic cores performing electrolysis-based reactions, and obtain free hydrogen (H2) gas for collection and delivery to a user. In aspects, the electrolytic core(s) can be scaled to produce a sufficient amount of hydrogen (H2) or oxygen (O2) gas so that the user can ingest that gas directly, without a need for storage. The system can be portable, and configured with a delivery tube for transmitting hydrogen or oxygen gas to a user. While safety risks are generally minimal, the system can be configured with sensors to detect fault conditions or hazards such as combustion or overpressure, which can only be caused by deliberate user action to expose gaseous products to flame or spark, and even then would not be likely to trigger violent combustion.
    Type: Application
    Filed: March 20, 2019
    Publication date: August 18, 2022
    Inventor: Philip Hsueh
  • Patent number: 11395901
    Abstract: Embodiments relate to systems and methods for gas delivery for personal medical consumption having safety features. A hydrogen or oxygen gas delivery system herein can include electrolytic cores performing electrolysis-based reactions, and obtain free hydrogen (H2) gas for collection and delivery to a user. In aspects, the electrolytic core(s) can be scaled to produce a sufficient amount of hydrogen (H2) or oxygen (O2) gas so that the user can ingest that gas directly, without a need for storage. The system can be portable, and configured with a delivery tube for transmitting hydrogen or oxygen gas to a user. While safety risks are generally minimal, the system can be configured with sensors to detect fault conditions or hazards such as combustion or overpressure, which can only be caused by deliberate user action to expose gaseous products to flame or spark, and even then would not be likely to trigger violent combustion.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: July 26, 2022
    Inventor: Philip Hsueh
  • Publication number: 20200297963
    Abstract: Embodiments relate to systems and methods for gas delivery for personal medical consumption having safety features. A hydrogen or oxygen gas delivery system herein can include electrolytic cores performing electrolysis-based reactions, and obtain free hydrogen (H2) gas for collection and delivery to a user. In aspects, the electrolytic core(s) can be scaled to produce a sufficient amount of hydrogen (H2) or oxygen (O2) gas so that the user can ingest that gas directly, without a need for storage. The system can be portable, and configured with a delivery tube for transmitting hydrogen or oxygen gas to a user. While safety risks are generally minimal, the system can be configured with sensors to detect fault conditions or hazards such as combustion or overpressure, which can only be caused by deliberate user action to expose gaseous products to flame or spark, and even then would not be likely to trigger violent combustion.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 24, 2020
    Inventors: Philip Hsueh, Raymond Wu
  • Patent number: 10525224
    Abstract: Embodiments relate to systems and methods for therapeutic gas delivery for personal medical consumption. A hydrogen delivery system herein can include one or more electrolytic cores which use source water to carry out electrolysis-based reactions, and obtain free hydrogen (H2) gas which can be separated using a proton exchange membrane (PEM) or other filter for collection and delivery to a user. In aspects, the electrolytic core or cores can be constructed or scaled to produce a sufficient amount of hydrogen (H2) gas so that the user can ingest that gas directly, immediately, and/or in real-time or near real-time, without a need for storage of the gas. In aspects, the system can be portable, and configured with a vent port to eliminate oxygen (O2) gas that may accumulate during electrolytic reactions, and also a coalescer unit to reduce or eliminate water or water vapor from the output hydrogen (H2) gas.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: January 7, 2020
    Inventor: Philip Hsueh
  • Publication number: 20190091436
    Abstract: Embodiments relate to systems and methods for therapeutic gas delivery for personal medical consumption. A hydrogen delivery system herein can include one or more electrolytic cores which use source water to carry out electrolysis-based reactions, and obtain free hydrogen (H2) gas which can be separated using a proton exchange membrane (PEM) or other filter for collection and delivery to a user. In aspects, the electrolytic core or cores can be constructed or scaled to produce a sufficient amount of hydrogen (H2) gas so that the user can ingest that gas directly, immediately, and/or in real-time or near real-time, without a need for storage of the gas. In aspects, the system can be portable, and configured with a vent port to eliminate oxygen (O2) gas that may accumulate during electrolytic reactions, and also a coalescer unit to reduce or eliminate water or water vapor from the output hydrogen (H2) gas.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Inventor: Philip Hsueh
  • Patent number: 8259334
    Abstract: Systems and techniques for printing on a workpiece. In one implementation, a data pump is used to create a packet of image data for a print head assembly. The data pump includes multiple state machines to receive image data from an image buffer on a computer, and a serializer to gather image data from each of the state machines. Each of the state machines is configured to send image data to the serializer at a different instance in time. The serializer is configured to arrange the gathered image data according to when the serializer received the image data from each of the state machines. The data pump also includes an optical fiber communication interface to connect with a communication channel.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: September 4, 2012
    Assignee: FUJIFILM Dimatix, Inc.
    Inventors: Deane A. Gardner, Philip Hsueh
  • Patent number: 8068245
    Abstract: Techniques, systems, and computer program products for transmitting data between a computer system and an external printing device. A technique may include generating a data packet in accordance with a communications protocol such that generating the data packet includes encoding the data packet according to a second layer of the protocol in a frame format according to a third layer of the protocol, transmitting the data packet from the computer system to the external printing device according to the first layer of the protocol; and decoding the data packet in accordance with the second layer of the protocol. The protocol can be defined to include three layers. In that protocol, a first layer may define transmission line, transmitters, and receivers for transmission, the second layer may define encoding and decoding, and the third layer may define a frame format of the data packet.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: November 29, 2011
    Assignee: FUJIFILM Dimatix, Inc.
    Inventors: Deane A. Gardner, Philip Hsueh
  • Patent number: 7982891
    Abstract: Techniques, systems, and computer program products for transmitting data between a computer system and an external printing device. A technique may include generating a data packet in accordance with a communications protocol such that generating the data packet includes encoding the data packet according to a second layer of the protocol in a frame format according to a third layer of the protocol, transmitting the data packet from the computer system to the external printing device according to the first layer of the protocol; and decoding the data packet in accordance with the second layer of the protocol. The protocol can be defined to include three layers. In that protocol, a first layer may define transmission line, transmitters, and receivers for transmission, the second layer may define encoding and decoding, and the third layer may define a frame format of the data packet.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: July 19, 2011
    Assignee: FUJIFILM Dimatix, Inc.
    Inventors: Deane A. Gardner, Philip Hsueh
  • Publication number: 20110157648
    Abstract: Systems and techniques for printing on a workpiece. In one implementation, a data pump is used to create a packet of image data for a print head assembly. The data pump includes multiple state machines to receive image data from an image buffer on a computer, and a serializer to gather image data from each of the state machines. Each of the state machines is configured to send image data to the serializer at a different instance in time. The serializer is configured to arrange the gathered image data according to when the serializer received the image data from each of the state machines. The data pump also includes an optical fiber communication interface to connect with a communication channel.
    Type: Application
    Filed: March 4, 2011
    Publication date: June 30, 2011
    Applicant: FUJIFILM Dimatix, Inc.
    Inventors: Deane A. Gardner, Philip Hsueh
  • Patent number: 7907298
    Abstract: Systems and techniques for printing on a workpiece. In one implementation, a data pump is used to create a packet of image data for a print head assembly. The data pump includes multiple state machines to receive image data from an image buffer on a computer, and a serializer to gather image data from each of the state machines. Each of the state machines is configured to send image data to the serializer at a different instance in time. The serializer is configured to arrange the gathered image data according to when the serializer received the image data from each of the state machines. The data pump also includes an optical fiber communication interface to connect with a communication channel.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: March 15, 2011
    Assignee: FUJIFILM Dimatix, Inc.
    Inventors: Deane A. Gardner, Philip Hsueh
  • Publication number: 20060082812
    Abstract: Systems and techniques for printing on a workpiece. In one implementation, a data pump is used to create a packet of image data for a print head assembly. The data pump includes multiple state machines to receive image data from an image buffer on a computer, and a serializer to gather image data from each of the state machines. Each of the state machines is configured to send image data to the serializer at a different instance in time. The serializer is configured to arrange the gathered image data according to when the serializer received the image data from each of the state machines. The data pump also includes an optical fiber communication interface to connect with a communication channel.
    Type: Application
    Filed: October 15, 2004
    Publication date: April 20, 2006
    Inventors: Deane Gardner, Philip Hsueh
  • Publication number: 20060082811
    Abstract: Techniques, systems, and computer program products for transmitting data between a computer system and an external printing device. A technique may include generating a data packet in accordance with a communications protocol such that generating the data packet includes encoding the data packet according to a second layer of the protocol in a frame format according to a third layer of the protocol, transmitting the data packet from the computer system to the external printing device according to the first layer of the protocol; and decoding the data packet in accordance with the second layer of the protocol. The protocol can be defined to include three layers. In that protocol, a first layer may define transmission line, transmitters, and receivers for transmission, the second layer may define encoding and decoding, and the third layer may define a frame format of the data packet.
    Type: Application
    Filed: October 15, 2004
    Publication date: April 20, 2006
    Inventors: Deane Gardner, Philip Hsueh