Patents by Inventor Philip J. G. Dingle
Philip J. G. Dingle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10107164Abstract: A reagent dosing system for dosing a reagent into the exhaust gas stream of an internal combustion engine includes a reagent tank for storing a supply of reagent; an injector module including an atomizing dispenser and a positive-displacement metering pump which draws reagent from the reagent tank and delivers it to the dispenser; a supply line coupling the reagent tank to the injector module; a dosing control unit operable to control the injector module to inject reagent into the exhaust gas stream; and an additional priming pump arranged, in use, to urge reagent along the supply line toward the injector module under selected conditions.Type: GrantFiled: January 26, 2016Date of Patent: October 23, 2018Assignee: DELPHI TECHNOLOGIES IP LIMITEDInventors: Philip J. G. Dingle, Martin Paul Hardy, Roman Stefan Zuelch
-
Patent number: 9279351Abstract: A reagent dosing system for dosing a reagent into the exhaust gas stream of an internal combustion engine includes a reagent tank for storing a supply of reagent; an injector module including an atomizing dispenser and a positive-displacement metering pump which draws reagent from the reagent tank and delivers it to the dispenser; a supply line coupling the reagent tank to the injector module; a dosing control unit operable to control the injector module to inject reagent into the exhaust gas stream; and an additional priming pump arranged, in use, to urge reagent along the supply line toward the injector module under selected conditions.Type: GrantFiled: July 1, 2014Date of Patent: March 8, 2016Assignee: Delphi International Operations Luxembourg S.A.R.L.Inventors: Philip J. G. Dingle, Martin Paul Hardy, Stefan Roman Zuelch
-
Patent number: 8899021Abstract: A method of dosing a reagent into an exhaust gas stream of an internal combustion engine having an SCR catalyst, the method comprising injecting reagent from a reagent tank into the exhaust gas stream at a position upstream of the SCR catalyst using a reagent injector in accordance with a first dosing schedule in order to remediate a predetermined proportion of NOx in the exhaust gas stream, the first dosing schedule being associated with a first range of engine operating conditions; and injecting reagent from the reagent tank into the exhaust gas stream at a position upstream of the SCR catalyst using a reagent injector in accordance with a second dosing schedule in order to enable heat transfer between the reagent injector and said injected reagent, the second dosing schedule being associated with a second range of engine operating conditions.Type: GrantFiled: May 28, 2009Date of Patent: December 2, 2014Assignee: Delphi International Operations Luxembourg S.A.R.L.Inventors: Philip J. G. Dingle, Martin Paul Hardy, Roman Stefan Zuelch
-
Patent number: 8027751Abstract: A fluid delivery system for delivering a metered dose of fluid from a supply tank (28) to a downstream chamber or vessel (10), comprises a pump apparatus (20) comprising a pump plunger (32) which is operable to perform a pumping stroke under the control of an electromagnetic actuator (36), including a solenoid (36a), to effect delivery of the fluid and a control unit (24) for supplying an input signal (58) to the solenoid (36a) to initiate a current flow to the solenoid (36a) and thereby initiate movement of the pump plunger (32). An electronic device (54) provides an output signal to indicate that movement of the pump plunger has stopped at the end of the pumping stroke, and a timer determines a time difference between the input signal (58) being supplied to the solenoid (36a) and the output signal being output by the electronic device (54).Type: GrantFiled: July 16, 2007Date of Patent: September 27, 2011Assignee: Delphi Technologies Holding S.arlInventor: Philip J. G. Dingle
-
Patent number: 7900605Abstract: A fuel injector for an internal combustion engine, the fuel injector comprising an injector body, a fuel supply passage defined in the injector body, the fuel supply passage containing fuel under high pressure in use of the injector, a pressure sensor for measuring the pressure of fuel in the passage in use, wherein the pressure sensor is situated within the injector body and is separated from fuel in the passage in use, and a method of fuel injection, comprising constructing an hydraulic behavior profile by fuel pressure measurement, using the hydraulic behavior profile to predict fuel pressure that will prevail in a fuel injector during an injection event, and supplying a control signal to the fuel injector to control the amount of fuel injected during the injection event in accordance with the predicted fuel pressure. By predicting the fuel pressure that will prevail during an injection event, the fuel delivered during the injection event can be accurately controlled.Type: GrantFiled: May 21, 2009Date of Patent: March 8, 2011Assignee: Delphi Technologies Holding S.arlInventor: Philip J. G. Dingle
-
Patent number: 7707825Abstract: A high-pressure metering pump for providing reductant in a single fluid engine exhaust dosing system having a solenoid for actuating a piston slidably received within an inner bore of a valve housing of the pump, the inner bore having a pressure chamber with an inlet check valve and an outlet check valve; and wherein movement of the piston causes high pressure reductant to be received at an atomizer of the system, the atomizer being disposed in a location to cause a maximum reduction of undesirable pollutant in the combustion gases of an engine.Type: GrantFiled: June 6, 2006Date of Patent: May 4, 2010Assignee: Delphi Technologies, Inc.Inventors: Philip J. G. Dingle, Joachim Kupe
-
Patent number: 7685990Abstract: A fuel injection apparatus for a fuel injector nozzle includes a moveable valve needle slideably located within a nozzle body, the nozzle body having an internal surface defining a valve seat between a fuel supply path and fuel outlets. The valve needle includes an obturator piston that is engagable with an axial fuel outlet and a two-stage lift mechanism for enabling lift of the valve needle. In a first stage lifted position of the valve needle, the valve face is spaced apart from the valve seat, and the obturator piston is positioned such that a fuel flow passage is opened between the obturator piston and the axial fuel outlet. In a second stage lifted position, the valve face is spaced further apart from the valve seat and the obturator piston is positioned such that the fuel flow passage between the obturator piston and the axial fuel outlet is substantially closed.Type: GrantFiled: November 29, 2007Date of Patent: March 30, 2010Assignee: Delphi Technologies, Inc.Inventor: Philip J. G. Dingle
-
Patent number: 7552717Abstract: A fuel injector for an internal combustion engine, the fuel injector comprising an injector body, a fuel supply passage defined in the injector body, the fuel supply passage containing fuel under high pressure in use of the injector, a pressure sensor for measuring the pressure of fuel in the passage in use, wherein the pressure sensor is situated within the injector body and is separated from fuel in the passage in use, and a method of fuel injection, comprising constructing an hydraulic behavior profile by fuel pressure measurement, using the hydraulic behavior profile to predict fuel pressure that will prevail in a fuel injector during an injection event, and supplying a control signal to the fuel injector to control the amount of fuel injected during the injection event in accordance with the predicted fuel pressure. By predicting the fuel pressure that will prevail during an injection event, the fuel delivered during the injection event can be accurately controlled.Type: GrantFiled: August 7, 2007Date of Patent: June 30, 2009Assignee: Delphi Technologies, Inc.Inventor: Philip J. G. Dingle
-
Publication number: 20090139487Abstract: A fuel injection apparatus for a fuel injector nozzle includes a moveable valve needle slideably located within a nozzle body, the nozzle body having an internal surface defining a valve seat between a fuel supply path and fuel outlets. The valve needle includes an obturator piston that is engagable with an axial fuel outlet and a two-stage lift mechanism for enabling lift of the valve needle. In a first stage lifted position of the valve needle, the valve face is spaced apart from the valve seat, and the obturator piston is positioned such that a fuel flow passage is opened between the obturator piston and the axial fuel outlet. In a second stage lifted position, the valve face is spaced further apart from the valve seat and the obturator piston is positioned such that the fuel flow passage between the obturator piston and the axial fuel outlet is substantially closed.Type: ApplicationFiled: November 29, 2007Publication date: June 4, 2009Inventor: Philip J. G. Dingle
-
Patent number: 7533656Abstract: An exhaust valve arrangement for use in a combustion chamber of a compression ignition internal combustion engine, includes a piston which is movable outwardly from the combustion chamber in response to pressure generated within the combustion chamber as a result of combustion, and an outer sleeve within which the piston is movable. The outer sleeve is an exhaust valve which is actuable between open and closed positions to open and close, respectively, an exhaust passage from the combustion chamber. The exhaust valve arrangement further includes a pump chamber for receiving fluid, and a pumping plunger coupled to the piston and movable with the piston so as to pressurise fluid (e.g. fuel) within the pump chamber as the piston is urged outwardly from the combustion chamber. The pressure within the pump chamber is proportional to cylinder pressure and is sensed by a sensor which provides an output signal to an Engine Control Unit (ECU 16).Type: GrantFiled: December 6, 2006Date of Patent: May 19, 2009Assignee: Delphi Technologies, Inc.Inventor: Philip J. G. Dingle
-
Patent number: 7509933Abstract: In a Type 2 engine, a valve deactivation hydraulic lash adjuster (DHLA) in accordance with the invention replaces a conventional hydraulic lash adjuster in the train of a gas-exchange valve in a compression-ignited engine. In a Type 3 engine, a similar DHLA is disposed within an articulated rocker arm which is made selectively competent (valve activating) or incompetent (valve deactivating) thereby. A solenoid valve within the assembly diverts hydraulic fluid between support and non-support of a piston slidably disposed in a housing and terminating in a ball head. The valve is force-balanced. The preferred hydraulic fluid is diesel fuel, allowing for smaller diameter passages and cleaner operation than in prior art systems, eliminating the need for an accumulator chamber and accumulator piston as in the prior art. An alternate version of a type 3 engine having a DHLA, in accordance with the invention, is also shown.Type: GrantFiled: March 6, 2006Date of Patent: March 31, 2009Assignee: Delphi Technologies, Inc.Inventor: Philip J. G. Dingle
-
Publication number: 20090038589Abstract: A fuel injector for an internal combustion engine, the fuel injector comprising an injector body, a fuel supply passage defined in the injector body, the fuel supply passage containing fuel under high pressure in use of the injector, a pressure sensor for measuring the pressure of fuel in the passage in use, wherein the pressure sensor is situated within the injector body and is separated from fuel in the passage in use, and a method of fuel injection, comprising constructing an hydraulic behaviour profile by fuel pressure measurement, using the hydraulic behaviour profile to predict fuel pressure that will prevail in a fuel injector during an injection event, and supplying a control signal to the fuel injector to control the amount of fuel injected during the injection event in accordance with the predicted fuel pressure. By predicting the fuel pressure that will prevail during an injection event, the fuel delivered during the injection event can be accurately controlled.Type: ApplicationFiled: August 7, 2007Publication date: February 12, 2009Inventor: Philip J. G. Dingle
-
Publication number: 20090019835Abstract: A fluid delivery system for delivering a metered dose of fluid from a supply tank (28) to a downstream chamber or vessel (10), comprises a pump apparatus (20) comprising a pump plunger (32) which is operable to perform a pumping stroke under the control of an electromagnetic actuator (36), including a solenoid (36a), to effect delivery of the fluid and a control unit (24) for supplying an input signal (58) to the solenoid (36a) to initiate a current flow to the solenoid (36a) and thereby initiate movement of the pump plunger (32). An electronic device (54) provides an output signal to indicate that movement of the pump plunger has stopped at the end of the pumping stroke, and a timer determines a time difference between the input signal (58) being supplied to the solenoid (36a) and the output signal being output by the electronic device (54).Type: ApplicationFiled: July 16, 2007Publication date: January 22, 2009Inventor: Philip J. G. Dingle
-
Publication number: 20080271709Abstract: A fuel system for use in a combustion chamber of a compression ignition internal combustion engine comprises a pump arrangement having a pump chamber for fluid and a piston which is movable outwardly from the combustion chamber in response to pressure generated within the combustion chamber as a result of combustion so as to pressurise fluid within the pump chamber. The system also includes a control valve assembly for controlling the supply of fluid that is pressurised within the pump chamber to an accumulator volume.Type: ApplicationFiled: May 2, 2007Publication date: November 6, 2008Inventor: Philip J. G. Dingle
-
Publication number: 20080230028Abstract: An outwardly-opening gas-exchange valve assembly for an internal combustion engine. The valve assembly includes a port in a firing chamber in an engine head, the port having a valve seat on a side opposite from the firing chamber. A piston-shaped poppet valve head slides in a bore in the engine head for mating with the valve seat to occlude passage of gas across the valve seat. Withdrawal of the poppet valve head from the seat opens the firing chamber to communication with an intake or exhaust manifold runner in the engine head. The poppet valve head may be actuated by an overcenter lever arrangement actuated selectively by hydraulic pressure or mechanical actuation. In a preferred embodiment, OO intake and exhaust valves are radially arranged in a hemispherical fire deck and may include an adjustable pitch helical channel to induce swirl to the incoming gas.Type: ApplicationFiled: November 29, 2007Publication date: September 25, 2008Inventor: Philip J. G. Dingle
-
Publication number: 20080135001Abstract: An exhaust valve arrangement for use in a combustion chamber of a compression ignition internal combustion engine, includes a piston which is movable outwardly from the combustion chamber in response to pressure generated within the combustion chamber as a result of combustion, and an outer sleeve within which the piston is movable. The outer sleeve is an exhaust valve which is actuable between open and closed positions to open and close, respectively, an exhaust passage from the combustion chamber. The exhaust valve arrangement further includes a pump chamber for receiving fluid, and a pumping plunger coupled to the piston and movable with the piston so as to pressurise fluid (e.g. fuel) within the pump chamber as the piston is urged outwardly from the combustion chamber. The pressure within the pump chamber is proportional to cylinder pressure and is sensed by a sensor which provides an output signal to an Engine Control Unit (ECU 16).Type: ApplicationFiled: December 6, 2006Publication date: June 12, 2008Inventor: Philip J. G. Dingle
-
Patent number: 7377249Abstract: An outwardly-opening gas-exchange valve assembly for an internal combustion engine. The valve assembly includes a port in a firing chamber in an engine head, the port having a valve seat on a side opposite from the firing chamber. A piston-shaped poppet valve head slides in a bore in the engine head for mating with the valve seat to occlude passage of gas across the valve seat. Withdrawal of the poppet valve head from the seat opens the firing chamber to communication with an intake or exhaust manifold runner in the engine head. The poppet valve head may be actuated by an overcenter lever arrangement actuated selectively by hydraulic pressure or mechanical actuation. In a preferred embodiment, OO intake and exhaust valves are radially arranged in a hemispherical fire deck and may include an adjustable pitch helical channel to induce swirl to the incoming gas.Type: GrantFiled: March 19, 2007Date of Patent: May 27, 2008Assignee: Delphi Technologies, Inc.Inventor: Philip J. G. Dingle
-
Patent number: 7308872Abstract: A valvetrain system mechanization for an internal combustion engine using compression ignition, including homogeneous charge compression ignition, having two intake and one or more exhaust valves per cylinder. The valves are operated by dual overhead camshafts having two-step cams. The intake and exhaust camshafts are provided with phasers for varying the opening and closing of the intake and exhaust valves. A two-step roller finger follower is disposed for each valve between the cam lobes and the valve stem. The two sets of intake and exhaust valves are controlled by separate oil control valves. Swirl of gases may be introduced by mismatching the lifts of the valves. The valve opening times, closing times, lifts, fuel injection, compression ratio, and exhaust gas recirculation may be varied to optimize combustion conditions for a range of engine operating modes.Type: GrantFiled: December 30, 2004Date of Patent: December 18, 2007Assignee: Delphi Technologies, Inc.Inventors: Mark C. Sellnau, Philip J. G. Dingle
-
Patent number: 7243862Abstract: A fuel injector nozzle and method for dispersing fuel during a normal combustion operation and a supplemental combustion operation, the fuel injector nozzle comprising: a plurality of first outlet openings configured to disperse fuel in a first arrangement; and a plurality of second outlet openings configured to collide with the fuel passing through the plurality of first openings to disperse fuel in a second arrangement, wherein either the first or second arrangement is selected by the position of the piston.Type: GrantFiled: December 30, 2004Date of Patent: July 17, 2007Assignee: Delphi Technologies, Inc.Inventor: Philip J. G. Dingle
-
Publication number: 20040093856Abstract: A high-pressure metering pump for providing reductant in a single fluid engine exhaust dosing system, comprising: a solenoid for actuating a piston slidably received within an inner bore of a valve housing of the pump, the inner bore having a pressure chamber with an inlet check valve and an outlet check valve; and wherein movement of the piston causes high pressure reductant to be received at an atomizer of the system, the atomizer being disposed in a location to cause a maximum reduction of undesirable pollutant in the combustion gases of an engine.Type: ApplicationFiled: August 8, 2003Publication date: May 20, 2004Inventors: Philip J. G. Dingle, Joachim Kupe