Patents by Inventor Philip J. Stephanou

Philip J. Stephanou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10458940
    Abstract: A system for insert detection includes a sensor and a processor. The processor is configured to receive capacitance measurement associated with the sensor and determine presence or absence of an insert based at least in part on the capacitance measurement and a threshold.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: October 29, 2019
    Assignee: Atlas Sensors, LLC
    Inventor: Philip J. Stephanou
  • Patent number: 10394195
    Abstract: In one embodiment, a manufacturing process is optimized by enabling a user to specify a product to be manufactured, enabling the user to specify a manufacturing system for manufacturing the product, enabling the user to select parameters for the product and the manufacturing system, and automatically calculating manufacturing metrics for the manufacturing process based upon the user-specified models and user selections.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: August 27, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Aditya Narayan Das, Philip J. Stephanou
  • Patent number: 10036835
    Abstract: A gradient-index lens for directing incident electromagnetic radiation comprises at least one substrate having a plurality of micro-features (e.g., trenches or holes) that may be arranged in a pattern of varied size and/or spacing. Each of the micro-features has at least one dimension that is less than a wavelength of the electromagnetic radiation. The spacing between adjacent micro-features is less than the wavelength of the electromagnetic radiation, and the size and spacing of the micro-features are sufficient to produce an effective refractive index profile of the lens that is graded.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: July 31, 2018
    Assignee: INVIS Technologies Corporation
    Inventors: Gregory J. Kintz, Philip J. Stephanou, Kurt E. Petersen, Srinivasan K. Ganapathi, John Batey
  • Publication number: 20180081091
    Abstract: A gradient-index lens for directing incident electromagnetic radiation comprises at least one substrate having a plurality of micro-features (e.g., trenches or holes) that may be arranged in a pattern of varied size and/or spacing. Each of the micro-features has at least one dimension that is less than a wavelength of the electromagnetic radiation. The spacing between adjacent micro-features is less than the wavelength of the electromagnetic radiation, and the size and spacing of the micro-features are sufficient to produce an effective refractive index profile of the lens that is graded.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 22, 2018
    Applicant: INVIS Technologies Corporation
    Inventors: Gregory J. Kintz, Philip J. Stephanou, Kurt E. Petersen, Srinivasan K. Ganapathi, John Batey
  • Patent number: 9880133
    Abstract: A system for determining a material property is disclosed. In some embodiments, a method for determining a material property comprises receiving a set of material responses corresponding to a set of ultrasonic excitations. The set of material responses are determined using measurements to determine a peak response for each of the set of ultrasonic excitations. In some embodiments, a device for making non-destructive in-situ measurements of the elastic yield strength of a sample (e.g., a steel plate or pipeline wall) is disclosed. The device determines the yield strength of a specimen based on transducing ultrasonic waves within the medium and correlating quantifiable characteristics of the resulting frequency response to the intrinsic elastic nonlinearity of the material. In various embodiments, the device includes one or more electrodes, an acoustic termination, a horn, a flange, a collar, power electronics, signal processors, a memory, a user interface, or any other appropriate device component.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: January 30, 2018
    Assignee: Atlas Sensors, LLC
    Inventor: Philip J. Stephanou
  • Patent number: 9817158
    Abstract: A gradient-index lens for directing incident electromagnetic radiation comprises at least one substrate having a plurality of micro-features (e.g., trenches or holes) that may be arranged in a pattern of varied size and/or spacing. Each of the micro-features has at least one dimension that is less than a wavelength of the electromagnetic radiation. The spacing between adjacent micro-features is less than the wavelength of the electromagnetic radiation, and the size and spacing of the micro-features are sufficient to produce an effective refractive index profile of the lens that is graded. A thermal imaging device incorporating a gradient-index lens is also provided.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: November 14, 2017
    Assignee: INVIS TECHNOLOGIES CORPORATION
    Inventors: Gregory J. Kintz, Philip J. Stephanou, Kurt E. Petersen, Srinivasan K. Ganapathi, John Batey
  • Patent number: 9690014
    Abstract: A gradient-index lens for focusing incident electromagnetic radiation comprises at least first and second substrates. Each of the substrates has a plurality of trenches or holes formed therein. The first substrate is stacked on the second substrate such that trenches or holes in the first substrate are substantially aligned with corresponding trenches or holes in the second substrate to form combined trenches or holes. Each of the combined trenches or holes has a width or diameter that is less than a wavelength of the electromagnetic radiation, and the spacing between adjacent ones of the combined trenches or holes is less than the wavelength of the electromagnetic radiation. The size and spacing of the combined trenches or holes in the stacked substrates are sufficient to produce an effective refractive index profile of the lens element that is graded. A method for producing the lens is also provided.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: June 27, 2017
    Assignee: INVIS TECHNOLOGIES CORPORATION
    Inventors: Gregory J. Kintz, Philip J. Stephanou, Kurt E. Petersen, Srinivasan K. Ganapathi, John Batey
  • Publication number: 20170168199
    Abstract: An imaging device comprises a focal plane array (FPA) having a plurality of singulated unit cells arranged on a carrier substrate. Each of the unit cells comprises a sub-array of pixels in the focal plane array. At least one of the unit cells has a different number or type of pixels than does another one of the unit cells arranged on the carrier substrate to enable multi-spectral imaging. The device also includes at least one lens positioned to direct incident electromagnetic radiation to the unit cells. A modular method for producing the FPA and lenses of a camera core uses wafer-level packaging and optics. Lenses and sub-arrays of pixels are each fabricated on densely packed, batch-fabricated wafers, and subsequently singulated and assembled into arrays on respective low cost carrier substrates. The carrier substrates are bonded together at the substrate level to form a series of camera cores, and the stacked substrates are singulated to form individual camera cores.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Applicant: INVIS Technologies Corporation
    Inventors: Srinivasan K. Ganapathi, Philip J. Stephanou, Kurt E. Petersen, John Batey
  • Publication number: 20160380014
    Abstract: A thermal imaging device comprises a focal plane array disposed on a focal plane substrate. The focal plane array comprises a plurality of pixels grouped into sub-arrays of pixels. The device also comprises a lens array comprising a plurality of lenslets. Each of the lenslets is arranged to focus infrared rays on a respective one of the sub-arrays of pixels. The focal plane array is enclosed in a vacuum in a space between the lens array and the focal plane substrate, and a readout circuit is electrically connected to the pixels. The thermal imaging device has a small form factor and low cost while maintaining adequate performance, enabling expanded usage of thermal imaging (e.g., in security, surveillance, first responder, defense and/or automotive applications).
    Type: Application
    Filed: March 13, 2014
    Publication date: December 29, 2016
    Applicant: INVIS TECHNOLOGIES CORPORATION
    Inventors: Srinivasan K. Ganapathi, Philip J. Stephanou, Kurt E. Petersen
  • Publication number: 20160219228
    Abstract: A gradient-index lens for directing incident electromagnetic radiation comprises at least one substrate having a plurality of micro-features (e.g., trenches or holes) that may be arranged in a pattern of varied size and/or spacing. Each of the micro-features has at least one dimension that is less than a wavelength of the electromagnetic radiation. The spacing between adjacent micro-features is less than the wavelength of the electromagnetic radiation, and the size and spacing of the micro-features are sufficient to produce an effective refractive index profile of the lens that is graded. A thermal imaging device incorporating a gradient-index lens is also provided.
    Type: Application
    Filed: December 10, 2015
    Publication date: July 28, 2016
    Applicant: Invis Corporation
    Inventors: Gregory J. Kintz, Philip J. Stephanou, Kurt E. Petersen, Srinivasan K. Ganapathi, John Batey
  • Publication number: 20160216412
    Abstract: A gradient-index lens for focusing incident electromagnetic radiation comprises at least first and second substrates. Each of the substrates has a plurality of trenches or holes formed therein. The first substrate is stacked on the second substrate such that trenches or holes in the first substrate are substantially aligned with corresponding trenches or holes in the second substrate to form combined trenches or holes. Each of the combined trenches or holes has a width or diameter that is less than a wavelength of the electromagnetic radiation, and the spacing between adjacent ones of the combined trenches or holes is less than the wavelength of the electromagnetic radiation. The size and spacing of the combined trenches or holes in the stacked substrates are sufficient to produce an effective refractive index profile of the lens element that is graded. A method for producing the lens is also provided.
    Type: Application
    Filed: December 10, 2015
    Publication date: July 28, 2016
    Applicant: INVIS Corporation
    Inventors: Gregory J. Kintz, Philip J. Stephanou, Kurt E. Petersen, Srinivasan K. Ganapathi, John Batey
  • Publication number: 20160142039
    Abstract: A contour mode micromechanical piezoelectric resonator. The resonator has a bottom electrode; a top electrode; and a piezoelectric layer disposed between the bottom electrode and the top electrode. The piezoelectric resonator has a planar surface with a cantilevered periphery, dimensioned to undergo in-plane lateral displacement at the periphery. The resonator also includes means for applying an alternating electric field across the thickness of the piezoelectric resonator. The electric field is configured to cause the resonator to have a contour mode in-plane lateral displacement that is substantially in the plane of the planar surface of the resonator, wherein the fundamental frequency for the displacement of the piezoelectric resonator is set in part lithographically by the planar dimension of the bottom electrode, the top electrode or the piezoelectric layer.
    Type: Application
    Filed: March 5, 2014
    Publication date: May 19, 2016
    Applicant: The Regents of the University of California
    Inventors: Gianluca Piazza, Philip J. Stephanou, Albert P. Pisano
  • Publication number: 20150281601
    Abstract: An imaging device comprises a focal plane array (FPA) having a plurality of singulated unit cells arranged on a carrier substrate. Each of the unit cells comprises a sub-array of pixels in the focal plane array. At least one of the unit cells has a different number or type of pixels than does another one of the unit cells arranged on the carrier substrate to enable multi-spectral imaging. The device also includes at least one lens positioned to direct incident electromagnetic radiation to the unit cells. A modular method for producing the FPA and lenses of a camera core uses wafer-level packaging and optics. Lenses and sub-arrays of pixels are each fabricated on densely packed, batch-fabricated wafers, and subsequently singulated and assembled into arrays (e.g., 3×3, 4×4, 4×5) on respective low cost carrier substrates. The carrier substrates are bonded together at the substrate level to form a series of camera cores, and the stacked substrates are singulated to form individual camera cores.
    Type: Application
    Filed: March 24, 2015
    Publication date: October 1, 2015
    Applicant: INVIS TECHNOLOGIES CORPORATION
    Inventors: Srinivasan K. Ganapathi, Philip J. Stephanou, Kurt E. Petersen, John Batey
  • Patent number: 8704616
    Abstract: A contour mode micromechanical piezoelectric resonator. The resonator has a bottom electrode; a top electrode; and a piezoelectric layer disposed between the bottom electrode and the top electrode. The piezoelectric resonator has a planar surface with a cantilevered periphery, dimensioned to undergo in-plane lateral displacement at the periphery. The resonator also includes means for applying an alternating electric field across the thickness of the piezoelectric resonator. The electric field is configured to cause the resonator to have a contour mode in-plane lateral displacement that is substantially in the plane of the planar surface of the resonator, wherein the fundamental frequency for the displacement of the piezoelectric resonator is set in part lithographically by the planar dimension of the bottom electrode, the top electrode or the piezoelectric layer.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 22, 2014
    Assignee: The Regents of the University of California
    Inventors: Gianluca Piazza, Philip J. Stephanou, Albert P. Pisano
  • Patent number: 8513863
    Abstract: A piezoelectric resonator device includes: a top electrode layer with a patterned structure, a top piezoelectric layer adjacent to the top layer, a middle metal layer adjacent to the top piezoelectric layer opposite the top layer, a bottom piezoelectric layer adjacent to the middle layer opposite the top piezoelectric layer, and a bottom electrode layer with a patterned structure and adjacent to the bottom piezoelectric layer opposite the middle layer. The top layer includes a first plurality of electrodes inter-digitated with a second plurality of electrodes. A first one of the electrodes in the top layer and a first one of the electrodes in the bottom layer are coupled to a first contact, and a second one of the electrodes in the top layer and a second one of the electrodes in the bottom layer are coupled to a second contact.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: August 20, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip J. Stephanou, Justin P. Black
  • Patent number: 8319584
    Abstract: A contour mode micromechanical piezoelectric resonator. The resonator has a bottom electrode; a top electrode; and a piezoelectric layer disposed between the bottom electrode and the top electrode. The piezoelectric resonator has a planar surface with a cantilevered periphery, dimensioned to undergo in-plane lateral displacement at the periphery. The resonator also includes means for applying an alternating electric field across the thickness of the piezoelectric resonator. The electric field is configured to cause the resonator to have a contour mode in-plane lateral displacement that is substantially in the plane of the planar surface of the resonator, wherein the fundamental frequency for the displacement of the piezoelectric resonator is set in part lithographically by the planar dimension of the bottom electrode, the top electrode or the piezoelectric layer.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: November 27, 2012
    Assignee: The Regents of the University of California
    Inventors: Gianluca Piazza, Philip J. Stephanou, Albert P. Pisano
  • Publication number: 20120274647
    Abstract: This disclosure provides implementations of electromechanical systems resonator structures, devices, apparatus, systems, and related processes. In one aspect, a sacrificial layer is deposited on an insulating substrate. A lower electrode layer is formed proximate the sacrificial layer. A piezoelectric layer is deposited on the lower electrode layer. An upper electrode layer is formed on the piezoelectric layer. At least a portion of the sacrificial layer is removed to define a cavity such that at least a portion of the lower electrode layer is spaced apart from the insulating substrate.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 1, 2012
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Je-Hsiung Lan, Sang-June Park, Jonghae Kim, Evgeni Gousev, Matthew Nowak, Philip J. Stephanou, Justin Black, Kurt Petersen, Srinivasan Ganapathi
  • Publication number: 20120274184
    Abstract: A piezoelectric resonator device comprises five layers. A first layer and a fifth layer include one or more metal electrodes. A second layer and a fourth layer comprise a piezoelectric material. A third layer comprises a metal layer. In a first area of the first layer the first layer metal electrodes include a first layer periodic structure along one dimension comprising one of the one or more first layer metal electrodes and a space with no first layer metal electrodes. In a second area of the fifth layer the fifth layer metal electrodes include a fifth layer periodic structure along the one dimension comprising one of the one or more fifth layer metal electrodes and a space with no fifth layer metal electrodes.
    Type: Application
    Filed: June 11, 2009
    Publication date: November 1, 2012
    Inventors: Philip J. Stephanou, Justin P. Black
  • Publication number: 20110133856
    Abstract: A contour mode micromechanical piezoelectric resonator. The resonator has a bottom electrode; a top electrode; and a piezoelectric layer disposed between the bottom electrode and the top electrode. The piezoelectric resonator has a planar surface with a cantilevered periphery, dimensioned to undergo in-plane lateral displacement at the periphery. The resonator also includes means for applying an alternating electric field across the thickness of the piezoelectric resonator. The electric field is configured to cause the resonator to have a contour mode in-plane lateral displacement that is substantially in the plane of the planar surface of the resonator, wherein the fundamental frequency for the displacement of the piezoelectric resonator is set in part lithographically by the planar dimension of the bottom electrode, the top electrode or the piezoelectric layer.
    Type: Application
    Filed: August 4, 2010
    Publication date: June 9, 2011
    Applicant: The Regents of the University of California
    Inventors: Gianluca Piazza, Philip J. Stephanou, Albert P. Pisano
  • Patent number: 7915974
    Abstract: A contour mode micromechanical piezoelectric resonator. The resonator has a bottom electrode; a top electrode; and a piezoelectric layer disposed between the bottom electrode and the top electrode. The piezoelectric resonator has a planar surface with a cantilevered periphery, dimensioned to undergo in-plane lateral displacement at the periphery. The resonator also includes means for applying an alternating electric field across the thickness of the piezoelectric resonator. The electric field is configured to cause the resonator to have a contour mode in-plane lateral displacement that is substantially in the plane of the planar surface of the resonator, wherein the fundamental frequency for the displacement of the piezoelectric resonator is set in part lithographically by the planar dimension of the bottom electrode, the top electrode or the piezoelectric layer.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: March 29, 2011
    Assignee: The Regents of the University of California
    Inventors: Gianluca Piazza, Philip J. Stephanou, Albert P. Pisano