Patents by Inventor Philip Klipstein

Philip Klipstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10573675
    Abstract: Photodetectors and methods for dual band photo detection are disclosed. The photodetector includes a stack of semiconductor layers defining first and second unipolar photosensitive modules (UPMs) of respectively opposite doping polarities, and a contact layer including at least one of metal and semiconductor materials having doping polarity opposite to that of the second UPM. The first and second UPMs are adapted for sensing radiation of different respective first and second wavelengths ranges. The second UPM is located upon the first UPM thereby forming a first diode junction between the first and second UPMs. The contact layer is located on the second UPM thereby forming a second diode junction between the second UPM and the contact layer. The first and second diode junctions are configured to have respectively opposite conduction directions, enabling selective sensing of electrical signals associated with the first and second wavelengths ranges.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: February 25, 2020
    Assignee: SEMI CONDUCTOR DEVICES—AN ELBIT SYSTEMS-RAFAEL PARTNERSHIP
    Inventor: Philip Klipstein
  • Patent number: 10079262
    Abstract: A semiconductor device is disclosed, which includes: at least one device layer being a crystallized layer for example including: a superlattice layer and/or a layer of group III-V semiconductor materials; and a passivation structure comprising one or more layers wherein at least one layer of the passivation structure is a passivation layer grown in-situ in a crystallized form on top of the device layer, and at least one of the one or more layers of the passivation structure includes material having a high density of surface states which forces surface pinning of an equilibrium Fermi level within a certain band gap of the device layer, away from its conduction and valence bands.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: September 18, 2018
    Assignee: SEMI CONDUCTOR DEVICES—AN ELBIT SYSTEMS-RAFAEL PARTNERSHIP
    Inventors: Philip Klipstein, Olga Klin, Eliezer Weiss
  • Publication number: 20180019269
    Abstract: Photodetectors and methods for dual band photo detection are disclosed. The photodetector includes a stack of semiconductor layers defining first and second unipolar photosensitive modules (UPMs) of respectively opposite doping polarities, and a contact layer including at least one of metal and semiconductor materials having doping polarity opposite to that of the second UPM. The first and second UPMs are adapted for sensing radiation of different respective first and second wavelengths ranges. The second UPM is located upon the first UPM thereby forming a first diode junction between the first and second UPMs. The contact layer is located on the second UPM thereby forming a second diode junction between the second UPM and the contact layer. The first and second diode junctions are configured to have respectively opposite conduction directions, enabling selective sensing of electrical signals associated with the first and second wavelengths ranges.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 18, 2018
    Inventor: Philip Klipstein
  • Patent number: 9761751
    Abstract: The present invention discloses a photo-detector comprising: an n-type photon absorbing layer of a first energy bandgap; a middle barrier layer, an intermediate layer is a semiconductor structure; and a contact layer of a third energy bandgap, wherein the layer materials are selected such that the first energy bandgap of the photon absorbing layer is narrower than that of said middle barrier layer; wherein the material composition and thickness of said intermediate layer are selected such that the valence band of the intermediate layer lies above the valence band in the barrier layer to create an efficient trapping and transfer of minority carriers from the barrier layer to the contact layer such that a tunnel current through the barrier layer from the contact layer to the photon absorbing layer is less than a dark current in the photo-detector and the dark current from the photon-absorbing layer to said middle barrier layer is essentially diffusion limited and is due to the unimpeded flow of minority carrier
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: September 12, 2017
    Assignee: Semi Conductor Devices
    Inventor: Philip Klipstein
  • Publication number: 20170179327
    Abstract: The present invention discloses a photo-detector comprising: an n-type photon absorbing layer of a first energy bandgap; a middle barrier layer, an intermediate layer is a semiconductor structure; and a contact layer of a third energy bandgap, wherein the layer materials are selected such that the first energy bandgap of the photon absorbing layer is narrower than that of said middle barrier layer; wherein the material composition and thickness of said intermediate layer are selected such that the valence band of the intermediate layer lies above the valence band in the barrier layer to create an efficient trapping and transfer of minority carriers from the barrier layer to the contact layer such that a tunnel current through the barrier layer from the contact layer to the photon absorbing layer is less than a dark current in the photo-detector and the dark current from the photon-absorbing layer to said middle barrier layer is essentially diffusion limited and is due to the unimpeded flow of minority carrier
    Type: Application
    Filed: March 9, 2017
    Publication date: June 22, 2017
    Inventor: Philip Klipstein
  • Publication number: 20170179185
    Abstract: A semiconductor device is disclosed, which includes: at least one device layer being a crystallized layer for example including: a superlattice layer and/or a layer of group III-V semiconductor materials; and a passivation structure comprising one or more layers wherein at least one layer of the passivation structure is a passivation layer grown in-situ in a crystallized form on top of the device layer, and at least one of the one or more layers of the passivation structure includes material having a high density of surface states which forces surface pinning of an equilibrium Fermi level within a certain band gap of the device layer, away from its conduction and valence bands.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 22, 2017
    Inventors: Philip Klipstein, Olga Klin, Eliezer Weiss
  • Patent number: 9627563
    Abstract: The present invention discloses a photo-detector comprising: an n-type photon absorbing layer of a first energy bandgap; a middle barrier layer, an intermediate layer is a semiconductor structure; and a contact layer of a third energy bandgap, wherein the layer materials are selected such that the first energy bandgap of the photon absorbing layer is narrower than that of said middle barrier layer; wherein the material composition and thickness of said intermediate layer are selected such that the valence band of the intermediate layer lies above the valence band in the barrier layer to create an efficient trapping and transfer of minority carriers from the barrier layer to the contact layer such that a tunnel current through the barrier layer from the contact layer to the photon absorbing layer is less than a dark current in the photo-detector and the dark current from the photon-absorbing layer to said middle barrier layer is essentially diffusion limited and is due to the unimpeded flow of minority carrier
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: April 18, 2017
    Assignee: Semi Conductor Devices—Al Elbit Systems-Rafael Partnership
    Inventor: Philip Klipstein
  • Patent number: 9613999
    Abstract: A semiconductor device is disclosed, which includes: at least one a device layer being a crystallized layer for example including: a superlattice layer and/or a layer of group III-V semiconductor materials; and a passivation structure comprising one or more layers wherein at least one layer of the passivation structure is a passivation layer grown in-situ in a crystallized form on top of the device layer, and at least one of the one or more layers of the passivation structure includes material having a high density of surface states which forces surface pinning of an equilibrium Fermi level within a certain band gap of the device layer, away from its conduction and valence bands.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 4, 2017
    Assignee: SEMI CONDUCTOR DEVICES—AN ELBIT SYSTEMS-RAFAEL PARTNERSHIP
    Inventors: Philip Klipstein, Olga Klin, Eliezer Weiss
  • Publication number: 20160307956
    Abstract: A semiconductor device is disclosed, which includes: at least one a device layer being a crystallized layer for example including: a superlattice layer and/or a layer of group III-V semiconductor materials; and a passivation structure comprising one or more layers wherein at least one layer of the passivation structure is a passivation layer grown in-situ in a crystallized form on top of the device layer, and at least one of the one or more layers of the passivation structure includes material having a high density of surface states which forces surface pinning of an equilibrium Fermi level within a certain band gap of the device layer, away from its conduction and valence bands.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 20, 2016
    Inventors: Philip KLIPSTEIN, Olga KLIN, Eliezer WEISS
  • Publication number: 20140312303
    Abstract: The present invention discloses a photo-detector comprising: an n-type photon absorbing layer of a first energy bandgap; a middle barrier layer, an intermediate layer is a semiconductor structure; and a contact layer of a third energy bandgap, wherein the layer materials are selected such that the first energy bandgap of the photon absorbing layer is narrower than that of said middle barrier layer; wherein the material composition and thickness of said intermediate layer are selected such that the valence band of the intermediate layer lies above the valence band in the barrier layer to create an efficient trapping and transfer of minority carriers from the barrier layer to the contact layer such that a tunnel current through the barrier layer from the contact layer to the photon absorbing layer is less than a dark current in the photo-detector and the dark current from the photon-absorbing layer to said middle barrier layer is essentially diffusion limited and is due to the unimpeded flow of minority carrier
    Type: Application
    Filed: April 7, 2014
    Publication date: October 23, 2014
    Applicant: Semi Conductor Devices-An Elbit Systems-Rafael Partnership
    Inventor: Philip KLIPSTEIN
  • Patent number: 8004012
    Abstract: A photo-detector with a reduced G-R noise comprises two n-type narrow bandgap layers surrounding a middle barrier layer having an energy bandgap at least equal to the sum of the bandgaps of the two narrow bandgap layers. Under the flat band conditions the conduction band edge of each narrow bandgap layer lies below the conduction band edge of the barrier layer by at least the bandgap energy of the other narrow bandgap layer. When biased with an externally applied voltage, the more negatively biased narrow bandgap layer is the contact layer and the more positively biased narrow bandgap layer is the photon absorbing layer.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: August 23, 2011
    Assignee: Semi-Conductor Devices—An Elbit Systems-Rafael Partnership
    Inventor: Philip Klipstein
  • Patent number: 7928473
    Abstract: The invention relates to a photo-detector with a reduced G-R noise, which comprises a sequence of a p-type contact layer, a middle barrier layer and an n-type photon absorbing layer, wherein the middle barrier layer has an energy bandgap significantly greater than that of the photon absorbing layer, and there is no layer with a narrower energy bandgap than that in the photon-absorbing layer.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: April 19, 2011
    Assignee: An Elbit Systems-Rafael Partnership
    Inventor: Philip Klipstein
  • Publication number: 20100295095
    Abstract: The invention relates to a photo-detector with a reduced G-R noise, which comprises a sequence of a p-type contact layer, a middle barrier layer and an n-type photon absorbing layer, wherein the middle barrier layer has an energy bandgap significantly greater than that of the photon absorbing layer, and there is no layer with a narrower energy bandgap than that in the photon-absorbing layer.
    Type: Application
    Filed: August 4, 2010
    Publication date: November 25, 2010
    Inventor: Philip KLIPSTEIN
  • Patent number: 7795640
    Abstract: The invention relates to a photo-detector with a reduced G-R noise, which comprises a sequence of a p-type contact layer, a middle barrier layer and an n-type photon absorbing layer, wherein the middle barrier layer has an energy bandgap significantly greater than that of the photon absorbing layer, and there is no layer with a narrower energy bandgap than that in the photon-absorbing layer.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: September 14, 2010
    Assignee: Semi-Conductor Devices-An Elbit Systems-Rafael Partnership
    Inventor: Philip Klipstein
  • Publication number: 20090256231
    Abstract: A photo-detector with a reduced G-R noise comprises two n-type narrow bandgap layers surrounding a middle barrier layer having an energy bandgap at least equal to the sum of the bandgaps of the two narrow bandgap layers. Under the flat band conditions the conduction band edge of each narrow bandgap layer lies below the conduction band edge of the barrier layer by at least the bandgap energy of the other narrow bandgap layer. When biased with an externally applied voltage, the more negatively biased narrow bandgap layer is the contact layer and the more positively biased narrow bandgap layer is the photon absorbing layer.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 15, 2009
    Applicant: Semi-Conductor Devices-An Elbit Systems-Rafael Partnership
    Inventor: Philip Klipstein
  • Publication number: 20070235758
    Abstract: The invention relates to a photo-detector with a reduced G-R noise, which comprises a sequence of a p-type contact layer, a middle barrier layer and an n-type photon absorbing layer, wherein the middle barrier layer has an energy bandgap significantly greater than that of the photon absorbing layer, and there is no layer with a narrower energy bandgap than that in the photon-absorbing layer.
    Type: Application
    Filed: June 28, 2004
    Publication date: October 11, 2007
    Inventor: Philip Klipstein