Patents by Inventor Philip Louis Trouilloud

Philip Louis Trouilloud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8901685
    Abstract: Magnetic materials and uses thereof are provided. In one aspect, a magnetic film is provided. The magnetic film comprises superparamagnetic particles on at least one surface thereof. The magnetic film may be patterned and may comprise a ferromagnetic material. The superparamagnetic particles may be coated with a non-magnetic polymer and/or embedded in a non-magnetic host material. The magnetic film may have increased damping and/or decreased coercivity.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Snorri Thorgeir Ingvarsson, Philip Louis Trouilloud, Shouheng Sun, Roger Hilsen Koch, David William Abraham
  • Patent number: 8102174
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: January 24, 2012
    Assignee: Infineon Technologies North America Corp.
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Patent number: 8027185
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: September 27, 2011
    Assignees: International Business Machines Corporation, Infineon Technologies North America Corp.
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Patent number: 8004278
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: August 23, 2011
    Assignees: International Business Machines Corporation, Infineon Technologies North America Corp.
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Publication number: 20110039020
    Abstract: Magnetic materials and uses thereof are provided. In one aspect, a magnetic film is provided. The magnetic film comprises superparamagnetic particles on at least one surface thereof. The magnetic film may be patterned and may comprise a ferromagnetic material. The superparamagnetic particles may be coated with a non-magnetic polymer and/or embedded in a non-magnetic host material. The magnetic film may have increased damping and/or decreased coercivity.
    Type: Application
    Filed: October 22, 2010
    Publication date: February 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Snorri Thorgeir Ingvarsson, Philip Louis Trouilloud, Shouheng Sun, Roger Hilsen Koch, David William Abraham
  • Patent number: 7880208
    Abstract: Magnetic materials and uses thereof are provided. In one aspect, a magnetic film is provided. The magnetic film comprises superparamagnetic particles on at least one surface thereof. The magnetic film may be patterned and may comprise a ferromagnetic material. The superparamagnetic particles may be coated with a non-magnetic polymer and/or embedded in a non-magnetic host material. The magnetic film may have increased damping and/or decreased coercivity.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Snorri Thorgeir Ingvarsson, Philip Louis Trouilloud, Shouheng Sun, Roger Hilsen Koch, David William Abraham
  • Patent number: 7768809
    Abstract: A shift register is provided, the shift register comprising at least one track including a storage region. The storage region comprises a plurality of magnetic domains for storing data. A given first one of the plurality of magnetic domains is adjacent to a given second one of the plurality of magnetic domains. The given first one of the plurality of magnetic domains and the given second one of the plurality of magnetic domains are arranged in a linear configuration. Further, the given first one of the plurality of magnetic domains and the given second one of the plurality of magnetic domains are separated from one another by at least one layer of non-magnetic material. The at least one layer of non-magnetic material preventing a propagation of a nucleated wall from traveling between the given first one of the plurality of magnetic domains and the given second one of the plurality of magnetic domains.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: August 3, 2010
    Assignee: International Business Machines Corporation
    Inventor: Philip Louis Trouilloud
  • Publication number: 20100085793
    Abstract: A shift register is provided, the shift register comprising at least one track including a storage region. The storage region comprises a plurality of magnetic domains for storing data. A given first one of the plurality of magnetic domains is adjacent to a given second one of the plurality of magnetic domains. The given first one of the plurality of magnetic domains and the given second one of the plurality of magnetic domains are arranged in a linear configuration. Further, the given first one of the plurality of magnetic domains and the given second one of the plurality of magnetic domains are separated from one another by at least one layer of non-magnetic material. The at least one layer of non-magnetic material preventing a propagation of a nucleated wall from traveling between the given first one of the plurality of magnetic domains and the given second one of the plurality of magnetic domains.
    Type: Application
    Filed: October 2, 2008
    Publication date: April 8, 2010
    Inventor: Philip Louis Trouilloud
  • Publication number: 20100023287
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Application
    Filed: August 11, 2009
    Publication date: January 28, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Publication number: 20090309587
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Application
    Filed: August 11, 2009
    Publication date: December 17, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Patent number: 7622735
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: November 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Publication number: 20090267597
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Application
    Filed: January 29, 2009
    Publication date: October 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Publication number: 20090261820
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Application
    Filed: May 2, 2005
    Publication date: October 22, 2009
    Applicants: International Business Machines Corporation, Infineon Technologies North America Corp.
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Patent number: 7453747
    Abstract: A method and apparatus for minimizing errors that may occur when writing information to a magnetic memory cell array with an operating write current due to changes in the local magnetic fields and. A test write current is sent to a reference memory cell and the effect of the test current on the orientation of the magnetization in the reference cell is monitored. The write current is then modified to compensate for any changes in the optimum operating point that have occurred. Arrays of reference magnetic memory cells having varying properties may be used to more accurately characterize any changes that have occurred in the operating environment. A phase difference between a time varying current used to drive the reference cell and the corresponding variations in the orientation of the magnetization in the reference cell may also be used to further characterize changes in the operating environment.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: November 18, 2008
    Assignee: International Business Machines Corporation
    Inventors: David William Abraham, Philip Louis Trouilloud
  • Patent number: 7286421
    Abstract: A method and apparatus for minimizing errors that may occur when writing information to a magnetic memory cell array with an operating write current due to changes in the local magnetic fields and. A test write current is sent to a reference memory cell and the effect of the test current on the orientation of the magnetization in the reference cell is monitored. The write current is then modified to compensate for any changes in the optimum operating point that have occurred. Arrays of reference magnetic memory cells having varying properties may be used to more accurately characterize any changes that have occurred in the operating environment. A phase difference between a time varying current used to drive the reference cell and the corresponding variations in the orientation of the magnetization in the reference cell may also be used to further characterize changes in the operating environment.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: October 23, 2007
    Assignee: International Business Machines Corporation
    Inventors: David William Abraham, Philip Louis Trouilloud
  • Patent number: 7061787
    Abstract: Techniques for processing magnetic devices are provided. In one aspect, a method of processing a magnetic device including two or more anti-parallel coupled layers comprises the following steps. A magnetic field is applied in a given direction to orient a direction of magnetization of the two or more anti-parallel coupled layers. The direction of the applied magnetic field is rotated in relation to a positioning of the two or more anti-parallel coupled layers to counteract at least a portion of a change in a direction of magnetization experienced by at least one of the two or more anti-parallel coupled layers when the applied magnetic field is reduced.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: June 13, 2006
    Assignees: International Business Machines Corporation, Infineon Technologies North America Corp.
    Inventors: Philip Louis Trouilloud, Ulrich Klostermann
  • Patent number: 6958929
    Abstract: A compensation system for an array of magnetic memory cells measures local operating conditions and compensates for changes in the operating characteristics of the magnetic memory cells in the array that result from the changes in the operating conditions. The magnetic field strength near the magnetic memory array is measured. If the magnetic field strength rises above, or falls below certain predetermined threshold values, the write current used to alter the orientation of the magnetic fields in the magnetic memory cells is altered based upon the predetermined operating characteristics of the memory cells. A solenoid or similar type magnetic field generator may also be used to substantially compensate for variations in the sensed magnetic fields. In addition, the temperature of the environment in which the magnetic memory cells are operating is sensed and appropriate changes made in the write current.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: October 25, 2005
    Assignee: International Business Machines Corporation
    Inventors: David William Abraham, Philip Louis Trouilloud
  • Patent number: 6927569
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: August 9, 2005
    Assignees: International Business Machines Corporation, Infineon Technologies AG
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Publication number: 20040253437
    Abstract: Magnetic materials and uses thereof are provided. In one aspect, a magnetic film is provided. The magnetic film comprises superparamagnetic particles on at least one surface thereof. The magnetic film may be patterned and may comprise a ferromagnetic material. The superparamagnetic particles may be coated with a non-magnetic polymer and/or embedded in a non-magnetic host material. The magnetic film may have increased damping and/or decreased coercivity.
    Type: Application
    Filed: June 10, 2003
    Publication date: December 16, 2004
    Applicant: International Business Machines Corporation
    Inventors: Snorri Thorgeir Ingvarsson, Philip Louis Trouilloud, Shouheng Sun, Roger Hilsen Koch, David William Abraham
  • Publication number: 20040051522
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Application
    Filed: September 16, 2002
    Publication date: March 18, 2004
    Applicant: International Business Machines Corporation
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid