Patents by Inventor Philip Mark Shryane Roberts

Philip Mark Shryane Roberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220234046
    Abstract: A method of operating an EWOD device to employs a magnetic field to separate magnetically responsive particles from a polar liquid droplet. The method includes the steps of dispensing a liquid droplet onto an element array of the EWOD device, wherein the liquid droplet includes magnetically responsive particles; performing an electrowetting operation to move the liquid droplet along the element array to a location relative to a magnet element in proximity to that location of the EWOD device; operating the magnet element to apply a magnetic field to the liquid droplet, wherein at least a portion of the magnetically responsive particles aggregate within the liquid droplet in response to the magnetic field; and separating the aggregated magnetically responsive particles from the liquid droplet with the magnetic field, wherein the aggregated magnetically responsive particles move in response to the magnetic field to a location on the element array in proximity to the magnet element.
    Type: Application
    Filed: June 12, 2020
    Publication date: July 28, 2022
    Inventors: Adam Christopher Wilson, Peter Neil Taylor, Sally Anderson, Philip Mark Shryane Roberts, Adrian Marc Simon Jacobs, Leslie Anne Parry-Jones, Benjamin James Hadwen
  • Patent number: 11235325
    Abstract: A microfluidic control system for controlling an EWOD device has an enhanced thermal control system for generating a temperature profile within an EWOD device that is inserted into the microfluidic control system. The microfluidic control system includes a housing that defines an aperture for receiving an EWOD device; an active heating component located within the housing at a base of the aperture; and a lid attached to the housing that is moveable between a closed position and an open position, the lid including a thermal control component. When the lid is in the closed position, the thermal control component is positioned at the aperture and aligned oppositely from the active heating component. The active heating component may include a plurality of independently controllable individual heating elements, and the thermal control component may include a respective plurality of individual thermal control elements.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: February 1, 2022
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Philip Mark Shryane Roberts, Adam Christopher Nightingale
  • Patent number: 11207686
    Abstract: An EWOD device and a related method of performing a digital biological assay are described that employs two volume measurements for enhanced assay determination. The method includes partitioning a sample reservoir and measuring the volume of each partition; initiating a biological assay wherein the biological assay includes measuring a partition property and a volume of each partition in real time as part of determining a concentration of the product substance in each partition based on the measured partition property and volume; and categorizing the partitions by a number of biological entities contained in each partition from which the number of biological entities may be calculated, which in turn may be used to calculate the total number of biological entities or concentration in the sample reservoir. The method further may include an enhanced partitioning process that minimizes variation in the volume of the partitions.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 28, 2021
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Sally Anderson, Pamela Ann Dothie, Philip Mark Shryane Roberts
  • Patent number: 11198130
    Abstract: A method of digital quantification of a species in an EWOD device includes inputting a sample volume and a diluent volume into the EWOD device; performing an electrowetting operation to generate a first sample droplet from the sample volume; performing an amplification process on the first sample droplet and measuring a turn-on value for the sample droplet; comparing the measured turn-on value to a target turn-on value for digital quantification; calculating a dilution factor based on the comparison of the measured and target turn-on values; performing an electrowetting operation to extract a second sample droplet from the sample volume; performing an electrowetting operation to dilute the second sample droplet with the diluent volume by the dilution factor to form a diluted second sample droplet; and performing a digital quantification on the diluted second sample droplet to quantify an initial concentration of the species in the sample volume.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: December 14, 2021
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Pamela Ann Dothie, Sally Anderson, Philip Mark Shryane Roberts
  • Publication number: 20210138457
    Abstract: A microfluidic control system for controlling an EWOD device has an enhanced thermal control system for generating a temperature profile within an EWOD device that is inserted into the microfluidic control system. The microfluidic control system includes a housing that defines an aperture for receiving an EWOD device; an active heating component located within the housing at a base of the aperture; and a lid attached to the housing that is moveable between a closed position and an open position, the lid including a thermal control component. When the lid is in the closed position, the thermal control component is positioned at the aperture and aligned oppositely from the active heating component. The active heating component may include a plurality of independently controllable individual heating elements, and the thermal control component may include a respective plurality of individual thermal control elements.
    Type: Application
    Filed: November 11, 2019
    Publication date: May 13, 2021
    Inventors: Philip Mark Shryane Roberts, Adam Christopher Nightingale
  • Patent number: 10859813
    Abstract: An active matrix electro-wetting on dielectric (AM-EWOD) device has an optically black array element structure to enhance optical detection of constituents within a liquid droplet. The AM-EWOD device includes a thin film transistor (TFT) substrate assembly having a hydrophobic layer; thin film electronics having a plurality of array elements arranged in an array of rows and columns, each of the array elements including an array element electrode and a TFT device; and an optically black material disposed between a plane of the TFT device and the hydrophobic layer. The TFT substrate assembly further includes a planarization structure that includes a component having the optically black material. The planarization structure has a planarization component disposed between the TFT device and the array element electrode, and an ionic barrier disposed between the array element electrode and the hydrophobic coating. The planarization component or the ionic barrier includes the optically black material.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: December 8, 2020
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Benjamin James Hadwen, Philip Mark Shryane Roberts
  • Patent number: 10695761
    Abstract: A microfluidic system is configured for enhanced temperature control by combining spatial and temporal temperature control. The microfluidic system includes an electro-wetting on dielectric (EWOD) device comprising an element array configured to receive one or more liquid droplets, the element array comprising a plurality of individual array elements; a control system configured to control actuation voltages applied to the element array to perform manipulation operations of the liquid droplets; and a plurality of thermal control elements located at different spatial locations along the EWOD device, at least one of the thermal control elements being variable in temperature with respect to time. The control system includes a thermal control unit configured to control temperatures of the thermal control elements to generate a plurality of thermal zones located at different spatial locations along the EWOD device, at least one of the thermal zones being variable in temperature with respect to time.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: June 30, 2020
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Sally Anderson, Pamela Ann Dothie, Philip Mark Shryane Roberts
  • Publication number: 20200061620
    Abstract: An electrowetting on dielectric (EWOD) device and a related method of performing a digital biological assay in an EWOD device are described.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 27, 2020
    Inventors: Sally Anderson, Pamela Ann Dothie, Philip Mark Shryane Roberts
  • Publication number: 20200012089
    Abstract: An active matrix electro-wetting on dielectric (AM-EWOD) device has an optically black array element structure to enhance optical detection of constituents within a liquid droplet. The AM-EWOD device includes a thin film transistor (TFT) substrate assembly having a hydrophobic layer; thin film electronics having a plurality of array elements arranged in an array of rows and columns, each of the array elements including an array element electrode and a TFT device; and an optically black material disposed between a plane of the TFT device and the hydrophobic layer. The TFT substrate assembly further includes a planarization structure that includes a component having the optically black material. The planarization structure has a planarization component disposed between the TFT device and the array element electrode, and an ionic barrier disposed between the array element electrode and the hydrophobic coating. The planarization component or the ionic barrier includes the optically black material.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 9, 2020
    Inventors: Benjamin James Hadwen, Philip Mark Shryane Roberts
  • Publication number: 20190388894
    Abstract: A method of performing a digital quantification of a species in an electrowetting on dielectric (EWOD) device comprising the steps of: inputting a sample volume into the EWOD device; inputting a diluent volume into the EWOD device; performing an electrowetting operation to generate a first sample droplet from the sample volume; performing an amplification process on the first sample droplet within the EWOD device; measuring a turn-on value for the sample droplet; comparing the measured turn-on value of the sample droplet to a target turn-on value for digital quantification; calculating a dilution factor based on the comparison of the measured turn-on value of the sample droplet to the target turn-on value; performing an electrowetting operation to extract a second sample droplet from the sample volume; performing an electrowetting operation to dilute the second sample droplet with the diluent volume in accordance with the dilution factor to form a diluted second sample droplet; and performing a digital quanti
    Type: Application
    Filed: June 21, 2018
    Publication date: December 26, 2019
    Inventors: Pamela Ann Dothie, Sally Anderson, Philip Mark Shryane Roberts
  • Publication number: 20180345279
    Abstract: A microfluidic system is configured for enhanced temperature control by combining spatial and temporal temperature control. The microfluidic system includes an electro-wetting on dielectric (EWOD) device comprising an element array configured to receive one or more liquid droplets, the element array comprising a plurality of individual array elements; a control system configured to control actuation voltages applied to the element array to perform manipulation operations of the liquid droplets; and a plurality of thermal control elements located at different spatial locations along the EWOD device, at least one of the thermal control elements being variable in temperature with respect to time. The control system includes a thermal control unit configured to control temperatures of the thermal control elements to generate a plurality of thermal zones located at different spatial locations along the EWOD device, at least one of the thermal zones being variable in temperature with respect to time.
    Type: Application
    Filed: May 30, 2017
    Publication date: December 6, 2018
    Inventors: Sally Anderson, Pamela Ann Dothie, Philip Mark Shryane Roberts
  • Publication number: 20150210563
    Abstract: A water purifier includes a first crystallization chamber and a second crystallization chamber that each receives a supply of input water; wherein each of the first and second crystallization chambers is a freeze/thaw chamber in which water is alternately frozen and thawed. A refrigerant circuit alternately supplies cold refrigerant to freeze the input water in one of the crystallization chambers, and supplies heated refrigerant to the other of the crystallization chambers to thaw the purified water. The first and second crystallization chambers operate concurrently and out-of-phase whereby heat recovered from freezing in one of the crystallization chambers is transferred by the refrigerant circuit for use in thawing in the other of the crystallization chambers.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 30, 2015
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Michael Charles Tomlin, Philip Mark Shryane Roberts, Sinéad Marie Matthews
  • Publication number: 20140196488
    Abstract: An apparatus extracts water from the air using a single circuit of gas containing a compressor, a cooling element, a heat exchanger and an ion source, where a single stream of air is used to provide water and to pre-cool the inlet air.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Philip Mark Shryane ROBERTS, Allan EVANS, Michael Charles TOMLIN, Harry Garth WALTON
  • Patent number: 8641918
    Abstract: A composite material comprises magnetic particles dispersed in electrically insulating material. The magnetic particles have an aspect ratio greater than 1 (preferably greater than 10) and a concentration sufficiently high to produce negative permeability. The magnetic particles may be magnetic flakes of reduced carbonyl iron of average diameter 50 ?m, average thickness 1 ?m and aspect ratio 50, the magnetic flakes being at least 25% by volume of the composite material. The magnetic flakes may be aligned to produce enhanced permeability. The electrically insulating material may be paraffin wax, particulate PTFE, or another polymer. To control permittivity, the composite material may include an electrically conducting component such as graphite or conductive coatings upon the magnetic flakes.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: February 4, 2014
    Assignee: Qinetiq Limited
    Inventors: Shahaid Hussain, Philip Mark Shryane Roberts, Peter Allen Hobson
  • Patent number: 8450392
    Abstract: This invention relates to the field of an electromagnetic (EM) field shielding paint compositions, in particular, those capable of providing substantially non metallic finish. The paint composition finds particular use in attenuating EM signals that may be used to carry data between communication devices, especially mobile phone and wi-fi devices. EM field shielding paints are typically available in jet-black or bright metallic finishes and usually possess limited scratch & abrasion resistance. The paint composition provides a one-pot solution to furnish a composition which has the visual appearance of a domestic type paint i.e. one with a non-metallic finish, with the ability to shield electromagnetic radiation. The composition comprises a supported metallic flake and a pigment, which have been provided in a narrowly defined range to furnish a desirable non-metallic appearance and possess electromagnetic shielding properties.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: May 28, 2013
    Assignee: Qinetiq Limited
    Inventors: Shahid Hussain, Christopher Robert Lawrence, Philip Mark Shryane Roberts
  • Publication number: 20120301642
    Abstract: A core-shell nanoparticle which includes a core formed of a transparent material and a shell including vanadium dioxide (VO2) doped to have a semiconductor-metal phase transition within a range of 10° C. to 40° C. A ratio of thicknesses of the core to the shell is in a range of 1:1 to 50:1.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Philip Mark Shryane ROBERTS
  • Publication number: 20110186771
    Abstract: A composite materil comprises magnetic particles dispersed in electrically insulating material. The magnetic particles have an aspect ratio greater than 1 (preferably greater than 10) and a concentration sufficiently high to produce negative permeability. The magnetic particles may be magnetic flakes of reduced carbonyl iron of average diameter 50 ?m, average thickness 1 ?m and aspect ratio 50, the magnetic flakes being at least 25% by volume of the composite material. The magnetic flakes may be aligned to produce enhanced permeability. The electrically insulating material may be paraffin wax, particulate PTFE, or another polymer. To control permittivity, the composite material may include an electrically conducting component such as graphite or conductive coatings upon the magnetic flakes.
    Type: Application
    Filed: August 15, 2008
    Publication date: August 4, 2011
    Inventors: Shahaid Hussain, Philip Mark Shryane Roberts, Peter Allen Hobson