Patents by Inventor Philip P. Truax

Philip P. Truax has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8402738
    Abstract: A method operable to improve pressure recovery and/or distortion within engine inlet is disclosed. A first fluid flow is provided to primary jet vortex generator(s) operable to inject fluid at a first injection rate into a boundary layer of a primary fluid flow within the inlet. A secondary fluid flow is injected by secondary jet vortex generator(s) at a second injection rate into the boundary layer of the primary fluid flow. The fluid injected at the first injection rate and second injection rate is operable to induce secondary flow structures within the boundary layer. These secondary close structures are then operable to improve or manipulate the pressure recovery of the inlet. At specific engine conditions, this method may redistribute the ratio of the first injection rate and second injection rate in order to improve pressure recovery and/or distortion of the inlet when the particular engine conditions.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: March 26, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Philip P. Truax, Daniel N. Miller, Edward C. Ma
  • Patent number: 8038102
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic flow field vortices within a fluid flow over a surface using micro-jet arrays. The system and method for actively manipulating and controlling the inception point, size and trajectory of flow field vortices within the fluid flow places micro-jet arrays on surfaces bounding the fluid flow. These micro-jet arrays are then actively manipulated to control the flow behavior of the ducted fluid flow, influence the inception point and trajectory of flow field vortices within the fluid flow, and reduce flow separation within the primary fluid flow.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: October 18, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Daniel N. Miller, Philip P. Truax, Patrick J. Yagle
  • Publication number: 20100084514
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic flow field vortices within a fluid flow over a surface using micro-jet arrays. The system and method for actively manipulating and controlling the inception point, size and trajectory of flow field vortices within the fluid flow places micro-jet arrays on surfaces bounding the fluid flow. These micro-jet arrays are then actively manipulated to control the flow behavior of the ducted fluid flow, influence the inception point and trajectory of flow field vortices within the fluid flow, and reduce flow separation within the primary fluid flow.
    Type: Application
    Filed: January 9, 2009
    Publication date: April 8, 2010
    Inventors: Daniel N. Miller, Philip P. Truax, Patrick J. Yagle
  • Publication number: 20100003129
    Abstract: The present invention provides a method operable to improve pressure recovery and/or distortion within engine inlet. This method involves providing a first fluid flow to primary jet vortex generator(s) operable to inject fluid at a first injection rate into a boundary layer of a primary fluid flow within the inlet. A secondary fluid flow is injected by secondary jet vortex generator(s) at a second injection rate into the boundary layer of the primary fluid flow. The fluid injected at the first injection rate and second injection rate is operable to induce secondary flow structures within the boundary layer. These secondary close structures are then operable to improve or manipulate the pressure recovery of the inlet. At specific engine conditions, this method may redistribute the ratio of the first injection rate and second injection rate in order to improve pressure recovery and/or distortion of the inlet when the particular engine conditions.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 7, 2010
    Inventors: Philip P. Truax, Daniel N. Miller, Edward C. Ma
  • Patent number: 7617670
    Abstract: A method operable to improve pressure recovery and/or distortion within engine inlet is disclosed. A first fluid flow is provided to primary jet vortex generator(s) operable to inject fluid at a first injection rate into a boundary layer of a primary fluid flow within the inlet. A secondary fluid flow is injected by secondary jet vortex generator(s) at a second injection rate into the boundary layer of the primary fluid flow, The fluid injected at the first injection rate and second injection rate is operable to induce secondary flow structures within the boundary layer. These secondary close structures are then operable to improve or manipulate the pressure recovery of the inlet. At specific engine conditions, this method may redistribute the ratio of the first injection rate and second injection rate in order to improve pressure recovery and/or distortion of the inlet when the particular engine conditions.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: November 17, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Philip P. Truax, Daniel N. Miller, Edward C. Ma
  • Patent number: 7510149
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic flow field vortices within a fluid flow over a surface using micro-jet arrays. The system and method for actively manipulating and controlling the inception point, size and trajectory of flow field vortices within the fluid flow places micro-jet arrays on surfaces bounding the fluid flow. These micro-jet arrays are then actively manipulated to control the flow behavior of the ducted fluid flow, influence the inception point and trajectory of flow field vortices within the fluid flow, and reduce flow separation within the primary fluid flow.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: March 31, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Daniel N. Miller, Philip P. Truax, Patrick J. Yagle
  • Patent number: 6682021
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic fluid flow over a surface. More specifically, the present invention provides a system and method to control aerodynamic or hydrodynamic fluid flow behavior of a ducted fluid flow using very-small-scale effectors. The system and method for actively manipulating and controlling fluid flow over a surface includes the placement of arrays of very-small-scale effectors on ducted surfaces bounding the ducted fluid flow. These very-small-scale effectors are actively manipulated to control the flow behavior of the ducted fluid flow and prevent flow separation within the primary fluid flow.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: January 27, 2004
    Assignee: Lockheed Martin Corporation
    Inventors: Philip P. Truax, Daniel N. Miller, Jeffrey W. Hamstra, Patrick J. Yagle
  • Patent number: 6371414
    Abstract: The present invention provides a system and method for actively manipulating and controlling aerodynamic or hydrodynamic fluid flow over a surface. More specifically, the present invention provides a system and method to control aerodynamic or hydrodynamic fluid flow behavior of a ducted fluid flow using very-small-scale effectors. The system and method for actively manipulating and controlling fluid flow over a surface includes the placement of arrays of very-small-scale effectors on ducted surfaces bounding the ducted fluid flow. These very-small-scale effectors actively manipulated the boundary layer manipulated to control the flow behavior of the ducted fluid flow and suppress or prevent flow separation within the primary fluid flow.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: April 16, 2002
    Assignee: Lockheed Martin Corporation
    Inventors: Philip P. Truax, Daniel N. Miller, Jeffrey W. Hamstra, Patrick J. Yagle