Patents by Inventor Philip S. Waggoner

Philip S. Waggoner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11015258
    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: May 25, 2021
    Assignee: International Business Machines Corporation
    Inventors: Stefan Harrer, Stephen M. Rossnagel, Philip S. Waggoner
  • Publication number: 20190323138
    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 24, 2019
    Inventors: Stefan Harrer, Stephen M. Rossnagel, Philip S. Waggoner
  • Patent number: 10323333
    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
    Type: Grant
    Filed: August 20, 2016
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stefan Harrer, Stephen M. Rossnagel, Philip S. Waggoner
  • Patent number: 10316423
    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
    Type: Grant
    Filed: August 20, 2016
    Date of Patent: June 11, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stefan Harrer, Stephen M. Rossnagel, Philip S. Waggoner
  • Patent number: 10267784
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: April 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Publication number: 20170059548
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Application
    Filed: November 11, 2016
    Publication date: March 2, 2017
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Publication number: 20160355943
    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
    Type: Application
    Filed: August 20, 2016
    Publication date: December 8, 2016
    Inventors: Stefan Harrer, Stephen M. Rossnagel, Philip S. Waggoner
  • Publication number: 20160355942
    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
    Type: Application
    Filed: August 20, 2016
    Publication date: December 8, 2016
    Inventors: Stefan Harrer, Stephen M. Rossnagel, Philip S. Waggoner
  • Patent number: 9513277
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: December 6, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Patent number: 9422154
    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: August 23, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stefan Harrer, Stephen M. Rossnagel, Philip S. Waggoner
  • Publication number: 20160139105
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Patent number: 9285339
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Publication number: 20150160159
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Application
    Filed: February 18, 2015
    Publication date: June 11, 2015
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Patent number: 8986524
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Patent number: 8779414
    Abstract: A disposable material layer is first deposited on a graphene layer or a carbon nanotube (CNT). The disposable material layer includes a material that is less inert than graphene or CNT so that a contiguous dielectric material layer can be deposited at a target dielectric thickness without pinholes therein. A gate stack is formed by patterning the contiguous dielectric material layer and a gate conductor layer deposited thereupon. The disposable material layer shields and protects the graphene layer or the CNT during formation of the gate stack. The disposable material layer is then removed by a selective etch, releasing a free-standing gate structure. The free-standing gate structure is collapsed onto the graphene layer or the CNT below at the end of the selective etch so that the bottom surface of the contiguous dielectric material layer contacts an upper surface of the graphene layer or the CNT.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn, Philip S. Waggoner
  • Patent number: 8764968
    Abstract: A technique for nanodevice is provided. A reservoir is filled with an ionic fluid. A membrane separates the reservoir, and the membrane includes electrode layers separated by insulating layers in which the electrode layers have an organic coating. A nanopore is formed through the membrane, and the organic coating on the electrode layers forms transient bonds to a base of a molecule in the nanopore. When a first voltage is applied to the electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels through the transient bonds formed to the base to be measured as a current signature for distinguishing the base.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stephen M. Rossnagel, Gustavo A. Stolovitzky, Philip S. Waggoner, George F. Walker
  • Publication number: 20130288434
    Abstract: A disposable material layer is first deposited on a graphene layer or a carbon nanotube (CNT). The disposable material layer includes a material that is less inert than graphene or CNT so that a contiguous dielectric material layer can be deposited at a target dielectric thickness without pinholes therein. A gate stack is formed by patterning the contiguous dielectric material layer and a gate conductor layer deposited thereupon. The disposable material layer shields and protects the graphene layer or the CNT during formation of the gate stack. The disposable material layer is then removed by a selective etch, releasing a free-standing gate structure. The free-standing gate structure is collapsed onto the graphene layer or the CNT below at the end of the selective etch so that the bottom surface of the contiguous dielectric material layer contacts an upper surface of the graphene layer or the CNT.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 31, 2013
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn, Philip S. Waggoner
  • Patent number: 8492748
    Abstract: A disposable material layer is first deposited on a graphene layer or a carbon nanotube (CNT). The disposable material layer includes a material that is less inert than graphene or CNT so that a contiguous dielectric material layer can be deposited at a target dielectric thickness without pinholes therein. A gate stack is formed by patterning the contiguous dielectric material layer and a gate conductor layer deposited thereupon. The disposable material layer shields and protects the graphene layer or the CNT during formation of the gate stack. The disposable material layer is then removed by a selective etch, releasing a free-standing gate structure. The free-standing gate structure is collapsed onto the graphene layer or the CNT below at the end of the selective etch so that the bottom surface of the contiguous dielectric material layer contacts an upper surface of the graphene layer or the CNT.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn, Philip S. Waggoner
  • Publication number: 20130040313
    Abstract: Biological and chemical sensors based on surface charge changes in a pore or channel, such as a nanopore or nanochannel, are employed to detect targeted analytes in an electrolyte solution having a low ion concentration. Receptors within the pore or channel capture a targeted analyte, causing a change in surface charge that affects ionic conductance. The change in ionic conductance is detected, evidencing the presence of the targeted analyte. A secondary tag may be introduced to the pore or channel for binding with a captured analyte in certain circumstances for causing a change in the surface charge.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Philip S. Waggoner
  • Publication number: 20130001082
    Abstract: A technique for nanodevice is provided. A reservoir is filled with an ionic fluid. A membrane separates the reservoir, and the membrane includes electrode layers separated by insulating layers in which the electrode layers have an organic coating. A nanopore is formed through the membrane, and the organic coating on the electrode layers forms transient bonds to a base of a molecule in the nanopore. When a first voltage is applied to the electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels through the transient bonds formed to the base to be measured as a current signature for distinguishing the base.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stephen M. Rossnagel, Gustavo A. Stolovitzky, Philip S. Waggoner, George F. Walker