Patents by Inventor Philip SALKIND

Philip SALKIND has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11808847
    Abstract: An aspect of the present disclosure is directed to and provides radar-reflecting systems and apparatus that employ metasurfaces to produce enhanced radar cross sections that are greater than those produced by the geometry of the surfaces alone. Another aspect of the present disclosure is directed to and provides heat-ducting systems and apparatus that include metasurfaces. A further aspect of the present disclosure is directed to and provides cards with metasurfaces. Exemplary embodiments utilize fractal plasmonic surfaces for a metasurface.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: November 7, 2023
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Philip Salkind
  • Publication number: 20230058690
    Abstract: An aspect of the present disclosure is directed to and provides radar-reflecting systems and apparatus that employ metasurfaces to produce enhanced radar cross sections that are greater than those produced by the geometry of the surfaces alone. Another aspect of the present disclosure is directed to and provides heat-ducting systems and apparatus that include metasurfaces. A further aspect of the present disclosure is directed to and provides cards with metasurfaces. Exemplary embodiments utilize fractal plasmonic surfaces for a metasurface.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 23, 2023
    Applicant: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Philip Salkind
  • Patent number: 11467279
    Abstract: An aspect of the present disclosure is directed to and provides radar-reflecting systems and apparatus that employ metasurfaces to produce enhanced radar cross sections that are greater than those produced by the geometry of the surfaces alone. Another aspect of the present disclosure is directed to and provides heat-ducting systems and apparatus that include metasurfaces. A further aspect of the present disclosure is directed to and provides cards with metasurfaces. Exemplary embodiments utilize fractal plasmonic surfaces for a metasurface.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: October 11, 2022
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Philip Salkind
  • Publication number: 20220075058
    Abstract: An aspect of the present disclosure is directed to and provides radar-reflecting systems and apparatus that employ metasurfaces to produce enhanced radar cross sections that are greater than those produced by the geometry of the surfaces alone. Another aspect of the present disclosure is directed to and provides heat-ducting systems and apparatus that include metasurfaces. A further aspect of the present disclosure is directed to and provides cards with metasurfaces. Exemplary embodiments utilize fractal plasmonic surfaces for a metasurface.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventors: Nathan Cohen, Philip Salkind
  • Patent number: 11268771
    Abstract: Systems and techniques are described that provide for enhanced gain and radiation characteristics of antennas. The systems and techniques employ layers or cards of fractal plasmonic surfaces to provide gain to the antennas. The fractal plasmonic surfaces each include a close-packed arrangements of resonators having self-similar or fractal shapes, which may be referred to as “fractal cells.” The cards can be held by a frame adapted to fit an antenna. The FPS cards can provide benefits for gain, field emission, directivity, increased bandwidth, power delivery, and/or heat management. One or more dielectric layers or cards may be used to enhance gain and/or directivity characteristics.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 8, 2022
    Assignee: FRACTAL ANTENNA SYSTEMS, INC.
    Inventors: Nathan Cohen, Philip Salkind
  • Patent number: 11175400
    Abstract: An aspect of the present disclosure is directed to and provides radar-reflecting systems and apparatus that employ metasurfaces to produce enhanced radar cross sections that are greater than those produced by the geometry of the surfaces alone. Another aspect of the present disclosure is directed to and provides heat-ducting systems and apparatus that include metasurfaces. A further aspect of the present disclosure is directed to and provides cards with metasurfaces. Exemplary embodiments utilize fractal plasmonic surfaces for a metasurface.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: November 16, 2021
    Assignee: FRACTAL ANTENNA SYSTEMS, INC.
    Inventors: Nathan Cohen, Philip Salkind
  • Publication number: 20210149045
    Abstract: An aspect of the present disclosure is directed to and provides radar-reflecting systems and apparatus that employ metasurfaces to produce enhanced radar cross sections that are greater than those produced by the geometry of the surfaces alone. Another aspect of the present disclosure is directed to and provides heat-ducting systems and apparatus that include metasurfaces. A further aspect of the present disclosure is directed to and provides cards with metasurfaces. Exemplary embodiments utilize fractal plasmonic surfaces for a metasurface.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 20, 2021
    Inventors: Nathan Cohen, Philip Salkind
  • Patent number: 10914534
    Abstract: Systems according to the present disclosure provide one or more surfaces that function as power radiating surfaces for which at least a portion of the radiating surface includes or is composed of “fractal cells” placed sufficiently closed close together to one another so that a surface wave causes near replication of current present in one fractal cell in an adjacent fractal cell. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges. Fractal plasmonic surface cards are described.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: February 9, 2021
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Ryan Thistle, Philip Salkind
  • Patent number: 10910727
    Abstract: Vivaldi tapered slot and Vivaldi horn antennas that feature or include fractal plasmonic surfaces (“FPS”) are described. Vivaldi slot antennas are described which include a conductive surface defining a tapered slot, with the conductive surface including a plurality of fractal resonators which form or constitute a fractal plasmonic surface (FPS). In some embodiments the fractal resonators can be defined by slots. In some embodiments the fractal resonators can include self-complementary features. In exemplary embodiments, two Vivaldi horn antennas may be used for a Vivaldi horn antenna. The two Vivaldi FPS antennas can be arranged in a crossed or cross configuration such that the two antennas are essentially perpendicular to one another and are therefore able to receive and transmit two orthogonal polarizations of radiation. The two antennas can be fed by separate respective feed lines. The two antennas can be mounted inside of a horn or casing.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: February 2, 2021
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Ryan Thistle, Daniel Earle, Philip Salkind, A. J. Shelman-Cohen
  • Patent number: 10901082
    Abstract: An aspect of the present disclosure is directed to and provides radar-reflecting systems and apparatus that employ metasurfaces to produce enhanced radar cross sections that are greater than those produced by the geometry of the surfaces alone. Another aspect of the present disclosure is directed to and provides heat-ducting systems and apparatus that include metasurfaces. A further aspect of the present disclosure is directed to and provides cards with metasurfaces. Exemplary embodiments utilize fractal plasmonic surfaces for a metasurface.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: January 26, 2021
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Philip Salkind
  • Patent number: 10727603
    Abstract: Arrangement of resonators in an aperiodic configurations are described, which can be used for electromagnetic cloaking of objects. The overall assembly of resonators, as structures, do not all repeat periodically and at least some of the resonators are spaced such that their phase centers are separated by more than a wavelength. The arrangements can include resonators of several different sizes and/or geometries arranged so that each size or geometry corresponds to a moderate or high “Q” response that resonates within a specific frequency range, and that arrangement within that specific grouping of akin elements is periodic in the overall structure. The relative spacing and arrangement of groupings can be defined by self similarity and origin symmetry. Fractal based scatters are described. Further described are bondary condition layer structures that can activate and deactive cloaking/lensing structures.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 28, 2020
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Obinna Okoro, Philip Salkind
  • Publication number: 20200106186
    Abstract: Vivaldi tapered slot and Vivaldi horn antennas that feature or include fractal plasmonic surfaces (“FPS”) are described. Vivaldi slot antennas are described which include a conductive surface defining a tapered slot, with the conductive surface including a plurality of fractal resonators which form or constitute a fractal plasmonic surface (FPS). In some embodiments the fractal resonators can be defined by slots. In some embodiments the fractal resonators can include self-complementary features. In exemplary embodiments, two Vivaldi horn antennas may be used for a Vivaldi horn antenna. The two Vivaldi FPS antennas can be arranged in a crossed or cross configuration such that the two antennas are essentially perpendicular to one another and are therefore able to receive and transmit two orthogonal polarizations of radiation. The two antennas can be fed by separate respective feed lines. The two antennas can be mounted inside of a horn or casing.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Nathan Cohen, Ryan Thistle, Daniel Earle, Philip Salkind, A.J. Shelman-Cohen
  • Publication number: 20200059003
    Abstract: Arrangement of resonators in an aperiodic configurations are described, which can be used for electromagnetic cloaking of objects. The overall assembly of resonators, as structures, do not all repeat periodically and at least some of the resonators are spaced such that their phase centers are separated by more than a wavelength. The arrangements can include resonators of several different sizes and/or geometries arranged so that each size or geometry corresponds to a moderate or high “Q” response that resonates within a specific frequency range, and that arrangement within that specific grouping of akin elements is periodic in the overall structure. The relative spacing and arrangement of groupings can be defined by self similarity and origin symmetry. Fractal based scatters are described. Further described are bondary condition layer structures that can activate and deactive cloaking/lensing structures.
    Type: Application
    Filed: May 16, 2016
    Publication date: February 20, 2020
    Inventors: Nathan Cohen, Obinna Okoro, Philip Salkind
  • Patent number: 10498040
    Abstract: Vivaldi tapered slot and Vivaldi horn antennas that feature or include fractal plasmonic surfaces (“FPS”) are described. Vivaldi slot antennas are described which include a conductive surface defining a tapered slot, with the conductive surface including a plurality of fractal resonators which form or constitute a fractal plasmonic surface (FPS). In some embodiments the fractal resonators can be defined by slots. In some embodiments the fractal resonators can include self-complementary features. In exemplary embodiments, two Vivaldi horn antennas may be used for a Vivaldi horn antenna. The two Vivaldi FPS antennas can be arranged in a crossed or cross configuration such that the two antennas are essentially perpendicular to one another and are therefore able to receive and transmit two orthogonal polarizations of radiation. The two antennas can be fed by separate respective feed lines. The two antennas can be mounted inside of a horn or casing.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 3, 2019
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Ryan Thistle, Daniel Earle, Philip Salkind, A. J. Shelman-Cohen
  • Publication number: 20190260131
    Abstract: Vivaldi tapered slot and Vivaldi horn antennas that feature or include fractal plasmonic surfaces (“FPS”) are described. Vivaldi slot antennas are described which include a conductive surface defining a tapered slot, with the conductive surface including a plurality of fractal resonators which form or constitute a fractal plasmonic surface (FPS). In some embodiments the fractal resonators can be defined by slots. In some embodiments the fractal resonators can include self-complementary features. In exemplary embodiments, two Vivaldi horn antennas may be used for a Vivaldi horn antenna. The two Vivaldi FPS antennas can be arranged in a crossed or cross configuration such that the two antennas are essentially perpendicular to one another and are therefore able to receive and transmit two orthogonal polarizations of radiation. The two antennas can be fed by separate respective feed lines. The two antennas can be mounted inside of a horn or casing.
    Type: Application
    Filed: December 11, 2018
    Publication date: August 22, 2019
    Inventors: Nathan Cohen, Ryan Thistle, Daniel Earle, Philip Salkind, A.J. Shelman-Cohen
  • Publication number: 20190162486
    Abstract: Systems according to the present disclosure provide one or more surfaces that function as power radiating surfaces for which at least a portion of the radiating surface includes or is composed of “fractal cells” placed sufficiently closed close together to one another so that a surface wave causes near replication of current present in one fractal cell in an adjacent fractal cell. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges. Fractal plasmonic surface cards are described.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 30, 2019
    Inventors: Nathan Cohen, Ryan Thistle, Philip Salkind
  • Publication number: 20190146082
    Abstract: An aspect of the present disclosure is directed to and provides radar-reflecting systems and apparatus that employ metasurfaces to produce enhanced radar cross sections that are greater than those produced by the geometry of the surfaces alone. Another aspect of the present disclosure is directed to and provides heat-ducting systems and apparatus that include metasurfaces. A further aspect of the present disclosure is directed to and provides cards with metasurfaces. Exemplary embodiments utilize fractal plasmonic surfaces for a metasurface.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 16, 2019
    Inventors: Nathan Cohen, Philip Salkind
  • Publication number: 20190128624
    Abstract: Systems and techniques are described that provide for enhanced gain and radiation characteristics of antennas. The systems and techniques employ layers or cards of fractal plasmonic surfaces to provide gain to the antennas. The fractal plasmonic surfaces each include a close-packed arrangements of resonators having self-similar or fractal shapes, which may be referred to as “fractal cells.” The cards can be held by a frame adapted to fit an antenna. The FPS cards can provide benefits for gain, field emission, directivity, increased bandwidth, power delivery, and/or heat management. One or more dielectric layers or cards may be used to enhance gain and/or directivity characteristics.
    Type: Application
    Filed: October 23, 2018
    Publication date: May 2, 2019
    Inventors: Nathan Cohen, Daniel Earle, Philip Salkind
  • Patent number: 10249956
    Abstract: Method and apparatus for making antennas and antenna components suitable for wideband transmission and reception are disclosed. Material accretion devices or apparatus such as a 3D printer can be used to form the antennas and antenna components. The antenna and antenna components can include pleated and/or self-similar features.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: April 2, 2019
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Philip Salkind
  • Patent number: 10027033
    Abstract: Arrangement of resonators in an aperiodic configurations are described, which can be used for electromagnetic cloaking of objects. The overall assembly of resonators, as structures, do not all repeat periodically and at least some of the resonators are spaced such that their phase centers are separated by more than a wavelength. The arrangements can include resonators of several different sizes and/or geometries arranged so that each size or geometry corresponds to a moderate or high “Q” response that resonates within a specific frequency range, and that arrangement within that specific grouping of akin elements is periodic in the overall structure. The relative spacing and arrangement of groupings can be defined by self similarity and origin symmetry. Fractal based scatters are described. Further described are boundary condition layer structures that can activate and deactivate cloaking/lensing structures.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: July 17, 2018
    Assignee: Fractal Antenna Systems, Inc.
    Inventors: Nathan Cohen, Obinna Okoro, Philip Salkind