Patents by Inventor Philip Spencer

Philip Spencer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980631
    Abstract: The present invention relates to the use of certain ?-lactamase inhibitors in conjunction with one or more ?-lactam antibiotics for the treatment of Strenotrophomonas maltophilia, tuberculosis or Pseudomonas species infections.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: May 14, 2024
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Jürgen Brem, Christopher J. Schofield, Samuel T. Cahill, Karina Calvopina, Philip Hinchcliffe, Ricky Cain, James Spencer, Collin W. G. Fishwick, Matthew B. Avison
  • Patent number: 11947266
    Abstract: A method for determining a correction relating to a performance metric of a semiconductor manufacturing process, the method including: obtaining a set of pre-process metrology data; processing the set of pre-process metrology data by decomposing the pre-process metrology data into one or more components which: a) correlate to the performance metric; or b) are at least partially correctable by a control process which is part of the semiconductor manufacturing process; and applying a trained model to the processed set of pre-process metrology data to determine the correction for the semiconductor manufacturing process.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: April 2, 2024
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Nicolaas Petrus Marcus Brantjes, Matthijs Cox, Boris Menchtchikov, Cyrus Emil Tabery, Youping Zhang, Yi Zou, Chenxi Lin, Yana Cheng, Simon Philip Spencer Hastings, Maxim Philippe Frederic Genin
  • Patent number: 11803127
    Abstract: A method for determining a root cause affecting yield in a process for manufacturing devices on a substrate, the method including: obtaining yield distribution data including a distribution of a yield parameter across the substrate or part thereof; obtaining sets of metrology data, each set including a spatial variation of a process parameter over the substrate or part thereof corresponding to a different layer of the substrate; comparing the yield distribution data and metrology data based on a similarity metric describing a spatial similarity between the yield distribution data and an individual set out of the sets of the metrology data; and determining a first similar set of metrology data out of the sets of metrology data, being the first set of metrology data in terms of processing order for the corresponding layers, which is determined to be similar to the yield distribution data.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: October 31, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Chenxi Lin, Cyrus Emil Tabery, Hakki Ergün Cekli, Simon Philip Spencer Hastings, Boris Menchtchikov, Yi Zou, Yana Cheng, Maxime Philippe Frederic Genin, Tzu-Chao Chen, Davit Harutyunyan, Youping Zhang
  • Patent number: 11754931
    Abstract: A method for determining a correction for an apparatus used in a process of patterning substrates, the method including: obtaining a group structure associated with a processing history and/or similarity in fingerprint of to be processed substrates; obtaining metrology data associated with a plurality of groups within the group structure, wherein the metrology data is correlated between the groups; and determining the correction for a group out of the plurality of groups by applying a model to the metrology data, the model including at least a group-specific correction component and a common correction component.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: September 12, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Roy Werkman, David Frans Simon Deckers, Simon Philip Spencer Hastings, Jeffrey Thomas Ziebarth, Samee Ur Rehman, Davit Harutyunyan, Chenxi Lin, Yana Cheng
  • Patent number: 11724999
    Abstract: The present invention relates to compounds of Formula I as defined herein, and salts and solvates thereof. (I) The present invention also relates to pharmaceutical compositions comprising compounds of Formula (I), and to compounds of Formula (I) for use in the treatment of proliferative disorders, such as cancer, as well as other diseases or conditions in which inhibition of a RAS-effector protein-protein interaction is implicated.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: August 15, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Terrence Rabbitts, Camilo Quevedo, Abimael Cruz, Simon Phillips, Philip Spencer Fallon, Anna Hopkins, Lydia Yuen-Wah Lee, Tenin Traore, Sophie Caroline Williams, Natalie Louise Winfield
  • Patent number: 11714357
    Abstract: A method and associated computer program for predicting an electrical characteristic of a substrate subject to a process. The method includes determining a sensitivity of the electrical characteristic to a process characteristic, based on analysis of electrical metrology data including electrical characteristic measurements from previously processed substrates and of process metrology data including measurements of at least one parameter related to the process characteristic measured from the previously processed substrates; obtaining process metrology data related to the substrate describing the at least one parameter; and predicting the electrical characteristic of the substrate based on the sensitivity and the process metrology data.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: August 1, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Alexander Ypma, Cyrus Emil Tabery, Simon Hendrik Celine Van Gorp, Chenxi Lin, Dag Sonntag, Hakki Ergün Cekli, Ruben Alvarez Sanchez, Shih-Chin Liu, Simon Philip Spencer Hastings, Boris Menchtchikov, Christiaan Theodoor De Ruiter, Peter Ten Berge, Michael James Lercel, Wei Duan, Pierre-Yves Jerome Yvan Guittet
  • Publication number: 20220305011
    Abstract: This invention relates to compounds of formula (I) and methods of treatment using the compounds. The invention also relates to processes and methods for producing the compounds of the invention. The compounds of the invention are modulators of Factor XII (e.g. Factor XIIa). In particular, the compounds are inhibitors of Factor XIIa and may be useful as anticoagulants.
    Type: Application
    Filed: March 28, 2019
    Publication date: September 29, 2022
    Inventors: Helen PHILIPPOU, Richard POSTER, Colin FISHWICK, Charlotte REVILL, Ian YULE, Roger TAYLOR, Alan NAYLOR, Philip Spencer FALLON, Stuart CROSBY, Anna HOPKINS, Lucie Juliette GUETZOYAN, Alistair James MACNAIR, Mark Richard STEWART, Natalie Louise WINFIELD
  • Patent number: 11426021
    Abstract: Provided is an apparatus which simplifies the removal of an onion skin comprising a skin contacting side (1), a cutting and spreading element (2), and a lifting member (31, 32). After the cutting tip (22) of the cutting and spreading element (2) cuts into the outermost onion layer(s) at a top end of the onion and slides downwards along an outer contour of the onion towards a bottom end of the onion to create a cut along the contour of the onion, the lower lifting edge (312, 322) of the lifting member (31, 32) slots behind an inner edge of the cut outermost onion layer(s) and the lifting member (31, 32) lifts up portions of the onion layer(s) in contact therewith as it slides downwards until it passes through the bottom end of the onion, thereby allowing a user to split apart the lifted portions along the cut to remove the outermost onion layer(s) together with outer hard skin of the entire onion in one go.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: August 30, 2022
    Inventor: Philip A Spencer
  • Publication number: 20220252988
    Abstract: A method for determining a correction for an apparatus used in a process of patterning substrates, the method including: obtaining a group structure associated with a processing history and/or similarity in fingerprint of to be processed substrates; obtaining metrology data associated with a plurality of groups within the group structure, wherein the metrology data is correlated between the groups; and determining the correction for a group out of the plurality of groups by applying a model to the metrology data, the model including at least a group-specific correction component and a common correction component.
    Type: Application
    Filed: March 18, 2020
    Publication date: August 11, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Roy WERKMAN, David Frans Simon DECKERS, Simon Philip Spencer HASTINGS, Jeffrey Thomas ZIEBARTH, Samee Ur REHMAN, Davit HARUTYUNYAN, Chenxi LIN, Yana CHENG
  • Patent number: 11281110
    Abstract: A method of determining a sampling control scheme and/or a processing control scheme for substrates processed by a device. The method uses a fingerprint model and an evolution model to generate the control scheme. The fingerprint model is based on fingerprint data for a processing parameter of at least one substrate processed by a device, and the evolution model represents variation of the fingerprint data over time. The fingerprint model and the evolution model are analyzed and a sampling and/or processing control scheme is generated using the analysis. The sampling control scheme provides an indication for where and when to take measurements on substrates processed by the device. The processing control scheme provides an indication for how to control the processing of the substrate. Also, there is provided a method of determining which of multiple devices contributed to a fingerprint of a processing parameter.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: March 22, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Jeroen Van Dongen, Wim Tjibbo Tel, Sarathi Roy, Yichen Zhang, Andrea Cavalli, Bart Laurens Sjenitzer, Simon Philip Spencer Hastings
  • Publication number: 20220026810
    Abstract: A method for determining a correction relating to a performance metric of a semiconductor manufacturing process, the method including: obtaining a set of pre-process metrology data; processing the set of pre-process metrology data by decomposing the pre-process metrology data into one or more components which: a) correlate to the performance metric; or b) are at least partially correctable by a control process which is part of the semiconductor manufacturing process; and applying a trained model to the processed set of pre-process metrology data to determine the correction for the semiconductor manufacturing process.
    Type: Application
    Filed: November 14, 2019
    Publication date: January 27, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Nicolaas Petrus Marcus BRANTJES, Matthijs COX, Boris MENCHTCHIKOV, Cyrus Emil TABERY, Youping ZHANG, Yi ZOU, Chenxi LIN, Yana CHENG, Simon Philip Spencer HASTINGS, Maxim Philippe Frederic GENIN
  • Publication number: 20220011728
    Abstract: A method for predicting yield relating to a process of manufacturing semiconductor devices on a substrate, the method including: obtaining a trained first model which translates modeled parameters into a yield parameter, the modeled parameters including: a) a geometrical parameter associated with one or more selected from: a geometric characteristic, dimension or position of a device element manufactured by the process and b) a trained free parameter; obtaining process parameter data including data regarding a process parameter characterizing the process; converting the process parameter data into values of the geometrical parameter; and predicting the yield parameter using the trained first model and the values of the geometrical parameter.
    Type: Application
    Filed: October 30, 2019
    Publication date: January 13, 2022
    Inventors: Youping ZHANG, Boris MENCHTCHIKOV, Cyrus Emil TABERY, Yi ZOU, Chenxi LIN, Yana CHENG, Simon Philip Spencer HASTINGS, Maxime Philippe Frederic GENIN
  • Publication number: 20210397172
    Abstract: A method for analyzing a process, the method including obtaining a multi-dimensional probability density function representing an expected distribution of values for a plurality of process parameters; obtaining a performance function relating values of the process parameters to a performance metric of the process; and using the performance function to map the probability density function to a performance probability function having the process parameters as arguments.
    Type: Application
    Filed: October 30, 2019
    Publication date: December 23, 2021
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Abraham SLACHTER, Wim Tjibbo TEL, Daan Maurits SLOTBOOM, Vadim Yourievich TIMOSHKOV, Koen Wilhelmus Cornelis Adrianus VAN DER STRATEN, Boris MENCHTCHIKOV, Simon Philip Spencer HASTINGS, Cyrus Emil TABERY, Maxime Philippe Frederic GENIN, Youping ZHANG, Yi ZOU, Chenxi LIN, Yana CHENG
  • Publication number: 20210389677
    Abstract: A method for determining a root cause affecting yield in a process for manufacturing devices on a substrate, the method including: obtaining yield distribution data including a distribution of a yield parameter across the substrate or part thereof; obtaining sets of metrology data, each set including a spatial variation of a process parameter over the substrate or part thereof corresponding to a different layer of the substrate; comparing the yield distribution data and metrology data based on a similarity metric describing a spatial similarity between the yield distribution data and an individual set out of the sets of the metrology data; and determining a first similar set of metrology data out of the sets of metrology data, being the first set of metrology data in terms of processing order for the corresponding layers, which is determined to be similar to the yield distribution data.
    Type: Application
    Filed: November 4, 2019
    Publication date: December 16, 2021
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Chenxi LIN, Cyrus Emil TABERY, Hakki Ergün CEKLI, Simon Philip Spencer HASTINGS, Boris MENCHTCHIKOV, Yi ZOU, Yana CHENG, Maxime Philippe Frederic GENIN, Tzu-Chao CHEN, Davit HARUTYUNYAN, Youping ZHANG
  • Publication number: 20210345810
    Abstract: Provided is an apparatus which simplifies the removal of an onion skin comprising a skin contacting side (1), a cutting and spreading element (2), and a lifting member (31, 32). After the cutting tip (22) of the cutting and spreading element (2) cuts into the outermost onion layer(s) at a top end of the onion and slides downwards along an outer contour of the onion towards a bottom end of the onion to create a cut along the contour of the onion, the lower lifting edge (312, 322) of the lifting member (31, 32) slots behind an inner edge of the cut outermost onion layer(s) and the lifting member (31, 32) lifts up portions of the onion layer(s) in contact therewith as it slides downwards until it passes through the bottom end of the onion, thereby allowing a user to split apart the lifted portions along the cut to remove the outermost onion layer(s) together with outer hard skin of the entire onion in one go.
    Type: Application
    Filed: March 24, 2020
    Publication date: November 11, 2021
    Inventor: Philip A SPENCER
  • Publication number: 20210325788
    Abstract: A method and associated computer program for predicting an electrical characteristic of a substrate subject to a process. The method includes determining a sensitivity of the electrical characteristic to a process characteristic, based on analysis of electrical metrology data including electrical characteristic measurements from previously processed substrates and of process metrology data including measurements of at least one parameter related to the process characteristic measured from the previously processed substrates; obtaining process metrology data related to the substrate describing the at least one parameter; and predicting the electrical characteristic of the substrate based on the sensitivity and the process metrology data.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Alexander YPMA, Cyrus Emil TABERY, Simon Hendrik Celine VAN GORP, Chenxi LIN, Dag SONNTAG, Hakki Ergün CEKLI, Ruben ALVAREZ SANCHEZ, Shih-Chin LIU, Simon Philip Spencer HASTINGS, Boris MENCHTCHIKOV, Christiaan Theodoor DE RUITER, Peter TEN BERGE, Michael James LERCEL, Wei DUAN, Pierre-Yves Jerome Yvan GUITTET
  • Publication number: 20210255547
    Abstract: A method of determining a sampling control scheme and/or a processing control scheme for substrates processed by a device. The method uses a fingerprint model and an evolution model to generate the control scheme. The fingerprint model is based on fingerprint data for a processing parameter of at least one substrate processed by a device, and the evolution model represents variation of the fingerprint data over time. The fingerprint model and the evolution model are analyzed and a sampling and/or processing control scheme is generated using the analysis. The sampling control scheme provides an indication for where and when to take measurements on substrates processed by the device. The processing control scheme provides an indication for how to control the processing of the substrate. Also, there is provided a method of determining which of multiple devices contributed to a fingerprint of a processing parameter.
    Type: Application
    Filed: May 20, 2019
    Publication date: August 19, 2021
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Jeroen Van Dongen, Wim Tjibbo TEL, Sarathi ROY, Yichen ZHANG, Andrea CAVALLI, Bart Laurens SJENITZER, Simon Philip Spencer HASTINGS
  • Patent number: 11086229
    Abstract: A method and associated computer program for predicting an electrical characteristic of a substrate subject to a process. The method includes determining a sensitivity of the electrical characteristic to a process characteristic, based on analysis of electrical metrology data including electrical characteristic measurements from previously processed substrates and of process metrology data including measurements of at least one parameter related to the process characteristic measured from the previously processed substrates; obtaining process metrology data related to the substrate describing the at least one parameter; and predicting the electrical characteristic of the substrate based on the sensitivity and the process metrology data.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 10, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Alexander Ypma, Cyrus Emil Tabery, Simon Hendrik Celine Van Gorp, Chenxi Lin, Dag Sonntag, Hakki Ergün Cekli, Ruben Alvarez Sanchez, Shih-Chin Liu, Simon Philip Spencer Hastings, Boris Menchtchikov, Christiaan Theodoor De Ruiter, Peter Ten Berge, Michael James Lercel, Wei Duan, Pierre-Yves Jerome Yvan Guittet
  • Patent number: 11022892
    Abstract: An inspection apparatus (140) measures asymmetry or other property of target structures (T) formed by a lithographic process on a substrate. For a given set of illumination conditions, accuracy of said measurement is influenced strongly by process variations across the substrate and/or between substrates. The apparatus is arranged to collect radiation scattered by a plurality of structures under two or more variants of said illumination conditions (p1?, p1, p1+; ?1?, ?1, ?1+). A processing system (PU) is arranged to derive the measurement of said property using radiation collected under a different selection or combination of said variants for different ones of said structures. The variants may be for example in wavelength, or in angular distribution, or in any characteristic of the illumination conditions. Selection and/or combination of variants is made with reference to a signal quality (302, Q, A) observed in the different variants.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: June 1, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Patrick Warnaar, Simon Philip Spencer Hastings, Alberto Da Costa Assafrao, Lukasz Jerzy Macht
  • Publication number: 20210088917
    Abstract: A measurement mark is disclosed. According to certain embodiments, the measurement mark includes a set of first test structures developed in a first layer on a substrate, each of the set of first test structures comprising a plurality of first features made of first conducting material. The measurement mark also includes a set of second test structures developed in a second layer adjacent to the first layer, each of the set of second test structures comprising a plurality of second features made of second conducting material. The measurement mark is configured to indicate connectivity between the set of first test structures and associated second test structures in the set of second test structures when imaged using a voltage-contrast imaging method.
    Type: Application
    Filed: December 7, 2018
    Publication date: March 25, 2021
    Inventors: Cyrus Emil TABERY, Simon Hendrik Celine VAN GORP, Simon Philip Spencer HASTINGS, Brennan PETERSON